{"title":"具有造血调节机制的双室细胞增殖模型的随机动力学。","authors":"Ren-Yi Wang, Marek Kimmel, Guodong Pang","doi":"10.1007/s00285-025-02250-9","DOIUrl":null,"url":null,"abstract":"<p><p>We present an asymptotic analysis of a stochastic two-compartmental cell division system with regulatory mechanisms inspired by Getto et al. (Math Biosci 245: 258-268, 2013). The hematopoietic system is modeled as a two-compartment system, where the first compartment consists of dividing cells in the bone marrow, referred to as type 0 cells, and the second compartment consists of post-mitotic cells in the blood, referred to as type 1 cells. Division and self-renewal of type 0 cells are regulated by the population density of type 1 cells. By scaling up the initial population, we demonstrate that the scaled dynamics converges in distribution to the solution of a system of ordinary differential equations (ODEs). This system of ODEs exhibits a unique non-trivial equilibrium that is globally stable. Furthermore, we establish that the scaled fluctuations of the density dynamics converge in law to a linear diffusion process with time-dependent coefficients. When the initial data is Gaussian, the limit process is a Gauss-Markov process. We analyze its asymptotic properties to elucidate the joint structure of both compartments over large times. This is achieved by proving exponential convergence in the 2-Wasserstein metric for the associated Gaussian measures on an [Formula: see text] Hilbert space. Finally, we apply our results to compare the effects of regulating division and self-renewal of type 0 cells, providing insights into their respective roles in maintaining hematopoietic system stability.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"91 2","pages":"18"},"PeriodicalIF":2.2000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic dynamics of two-compartment cell proliferation models with regulatory mechanisms for hematopoiesis.\",\"authors\":\"Ren-Yi Wang, Marek Kimmel, Guodong Pang\",\"doi\":\"10.1007/s00285-025-02250-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present an asymptotic analysis of a stochastic two-compartmental cell division system with regulatory mechanisms inspired by Getto et al. (Math Biosci 245: 258-268, 2013). The hematopoietic system is modeled as a two-compartment system, where the first compartment consists of dividing cells in the bone marrow, referred to as type 0 cells, and the second compartment consists of post-mitotic cells in the blood, referred to as type 1 cells. Division and self-renewal of type 0 cells are regulated by the population density of type 1 cells. By scaling up the initial population, we demonstrate that the scaled dynamics converges in distribution to the solution of a system of ordinary differential equations (ODEs). This system of ODEs exhibits a unique non-trivial equilibrium that is globally stable. Furthermore, we establish that the scaled fluctuations of the density dynamics converge in law to a linear diffusion process with time-dependent coefficients. When the initial data is Gaussian, the limit process is a Gauss-Markov process. We analyze its asymptotic properties to elucidate the joint structure of both compartments over large times. This is achieved by proving exponential convergence in the 2-Wasserstein metric for the associated Gaussian measures on an [Formula: see text] Hilbert space. Finally, we apply our results to compare the effects of regulating division and self-renewal of type 0 cells, providing insights into their respective roles in maintaining hematopoietic system stability.</p>\",\"PeriodicalId\":50148,\"journal\":{\"name\":\"Journal of Mathematical Biology\",\"volume\":\"91 2\",\"pages\":\"18\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00285-025-02250-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-025-02250-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Stochastic dynamics of two-compartment cell proliferation models with regulatory mechanisms for hematopoiesis.
We present an asymptotic analysis of a stochastic two-compartmental cell division system with regulatory mechanisms inspired by Getto et al. (Math Biosci 245: 258-268, 2013). The hematopoietic system is modeled as a two-compartment system, where the first compartment consists of dividing cells in the bone marrow, referred to as type 0 cells, and the second compartment consists of post-mitotic cells in the blood, referred to as type 1 cells. Division and self-renewal of type 0 cells are regulated by the population density of type 1 cells. By scaling up the initial population, we demonstrate that the scaled dynamics converges in distribution to the solution of a system of ordinary differential equations (ODEs). This system of ODEs exhibits a unique non-trivial equilibrium that is globally stable. Furthermore, we establish that the scaled fluctuations of the density dynamics converge in law to a linear diffusion process with time-dependent coefficients. When the initial data is Gaussian, the limit process is a Gauss-Markov process. We analyze its asymptotic properties to elucidate the joint structure of both compartments over large times. This is achieved by proving exponential convergence in the 2-Wasserstein metric for the associated Gaussian measures on an [Formula: see text] Hilbert space. Finally, we apply our results to compare the effects of regulating division and self-renewal of type 0 cells, providing insights into their respective roles in maintaining hematopoietic system stability.
期刊介绍:
The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena.
Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.