基于结构的分类方法。

IF 1.2 4区 心理学 Q4 PSYCHOLOGY, MATHEMATICAL
Jongwan Kim
{"title":"基于结构的分类方法。","authors":"Jongwan Kim","doi":"10.1177/01466216251360544","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a novel structure-based classification (SBC) framework that leverages pairwise distance representations of rating data to enhance classification performance while mitigating individual differences in scale usage. Unlike conventional feature-based approaches that rely on absolute rating scores, SBC transforms rating data into structured representations by computing pairwise distances between rating dimensions. This transformation captures the relational structure of ratings, ensuring consistency between training and test datasets and enhancing model robustness. To evaluate the effectiveness of this approach, we conducted a simulation study in which participants rated stimuli across multiple affective dimensions, with systematic individual differences in scale usage. The results demonstrated that SBC successfully classified affective stimuli despite these variations, performing comparably to traditional classification methods. The findings suggest that relational structures among rating dimensions contain meaningful information for affective classification, akin to functional connectivity approaches in cognitive neuroscience. By focusing on rating interdependencies as well as absolute values, SBC provides a robust and generalizable method for analyzing subjective responses, with implications for psychological research.</p>","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":" ","pages":"01466216251360544"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12264251/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structure-Based Classification Approach.\",\"authors\":\"Jongwan Kim\",\"doi\":\"10.1177/01466216251360544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study introduces a novel structure-based classification (SBC) framework that leverages pairwise distance representations of rating data to enhance classification performance while mitigating individual differences in scale usage. Unlike conventional feature-based approaches that rely on absolute rating scores, SBC transforms rating data into structured representations by computing pairwise distances between rating dimensions. This transformation captures the relational structure of ratings, ensuring consistency between training and test datasets and enhancing model robustness. To evaluate the effectiveness of this approach, we conducted a simulation study in which participants rated stimuli across multiple affective dimensions, with systematic individual differences in scale usage. The results demonstrated that SBC successfully classified affective stimuli despite these variations, performing comparably to traditional classification methods. The findings suggest that relational structures among rating dimensions contain meaningful information for affective classification, akin to functional connectivity approaches in cognitive neuroscience. By focusing on rating interdependencies as well as absolute values, SBC provides a robust and generalizable method for analyzing subjective responses, with implications for psychological research.</p>\",\"PeriodicalId\":48300,\"journal\":{\"name\":\"Applied Psychological Measurement\",\"volume\":\" \",\"pages\":\"01466216251360544\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12264251/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Psychological Measurement\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/01466216251360544\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PSYCHOLOGY, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01466216251360544","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究引入了一种新的基于结构的分类(SBC)框架,该框架利用评级数据的两两距离表示来提高分类性能,同时减轻量表使用的个体差异。与依赖绝对评分的传统基于特征的方法不同,SBC通过计算评分维度之间的成对距离将评分数据转换为结构化表示。这种转换捕获了评级的关系结构,确保了训练和测试数据集之间的一致性,增强了模型的鲁棒性。为了评估这种方法的有效性,我们进行了一项模拟研究,在该研究中,参与者在多个情感维度上对刺激进行评分,并在量表使用上存在系统的个体差异。结果表明,尽管存在这些差异,SBC仍能成功地对情感刺激进行分类,其表现与传统分类方法相当。研究结果表明,评级维度之间的关系结构包含情感分类的有意义信息,类似于认知神经科学中的功能连接方法。通过专注于评估相互依赖性和绝对值,SBC为分析主观反应提供了一种强大且可推广的方法,对心理学研究具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure-Based Classification Approach.

This study introduces a novel structure-based classification (SBC) framework that leverages pairwise distance representations of rating data to enhance classification performance while mitigating individual differences in scale usage. Unlike conventional feature-based approaches that rely on absolute rating scores, SBC transforms rating data into structured representations by computing pairwise distances between rating dimensions. This transformation captures the relational structure of ratings, ensuring consistency between training and test datasets and enhancing model robustness. To evaluate the effectiveness of this approach, we conducted a simulation study in which participants rated stimuli across multiple affective dimensions, with systematic individual differences in scale usage. The results demonstrated that SBC successfully classified affective stimuli despite these variations, performing comparably to traditional classification methods. The findings suggest that relational structures among rating dimensions contain meaningful information for affective classification, akin to functional connectivity approaches in cognitive neuroscience. By focusing on rating interdependencies as well as absolute values, SBC provides a robust and generalizable method for analyzing subjective responses, with implications for psychological research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
50
期刊介绍: Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信