Zhixin Du, Pengbei Fan, Liping Yang, Junlin Hou, Xiaodan Du, Yaohui Wang, Yujie Wang, Yulong Wang, Lingling Li
{"title":"用增材制造革新女性生殖系统研究。","authors":"Zhixin Du, Pengbei Fan, Liping Yang, Junlin Hou, Xiaodan Du, Yaohui Wang, Yujie Wang, Yulong Wang, Lingling Li","doi":"10.1177/19373341251359111","DOIUrl":null,"url":null,"abstract":"<p><p>The female reproductive system is highly complex, making it essential for applied research and translational medicine to accurately model its intricate physiological functions or develop strategies for restoring them. However, significant structural and functional differences between human and animal models, along with the limitations of static 2D cell culture technologies, underscore the need for more dynamic and sophisticated <i>in vitro</i> platforms, as well as <i>in vivo</i> therapies. These advancements are critical for deepening our understanding of reproductive biology and supporting clinical applications. Recent advancements in additive manufacturing technology have opened new frontiers in the study of the female reproductive system. By introducing diverse preclinical models and expanding the range of potential applications, this field has reached new heights, with the rapidly evolving research paradigm reshaping the scientific landscape. This review aims to summarize the growing body of evidence surrounding bioengineering strategies, platforms, and therapies in female reproductive medicine, with the goal of advancing our understanding of female reproductive biology and providing new avenues for fertility restoration. Specifically, we will examine the historical development, technological innovations, and scientific research related to the creation of 3D-engineered tissues for reconstructing the female reproductive system. Impact Statement This review aims to summarize the growing body of evidence surrounding bioengineering strategies, platforms, and therapies in female reproductive medicine, with the goal of advancing our understanding of female reproductive biology and providing new avenues for fertility restoration. Specifically, the historical development, technological innovations, and scientific research related to the 3D-engineered tissues for reconstructing the female reproductive system were summarized. This review would help the audience, especially bioengineers who study the female reproductive system disease, as well as obstetricians and gynecologists, understand the possible application of additive manufacturing and acquire the strategies to engineer the female reproductive system <i>in vitro</i>.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revolutionizing the Female Reproductive System Research with Additive Manufacturing.\",\"authors\":\"Zhixin Du, Pengbei Fan, Liping Yang, Junlin Hou, Xiaodan Du, Yaohui Wang, Yujie Wang, Yulong Wang, Lingling Li\",\"doi\":\"10.1177/19373341251359111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The female reproductive system is highly complex, making it essential for applied research and translational medicine to accurately model its intricate physiological functions or develop strategies for restoring them. However, significant structural and functional differences between human and animal models, along with the limitations of static 2D cell culture technologies, underscore the need for more dynamic and sophisticated <i>in vitro</i> platforms, as well as <i>in vivo</i> therapies. These advancements are critical for deepening our understanding of reproductive biology and supporting clinical applications. Recent advancements in additive manufacturing technology have opened new frontiers in the study of the female reproductive system. By introducing diverse preclinical models and expanding the range of potential applications, this field has reached new heights, with the rapidly evolving research paradigm reshaping the scientific landscape. This review aims to summarize the growing body of evidence surrounding bioengineering strategies, platforms, and therapies in female reproductive medicine, with the goal of advancing our understanding of female reproductive biology and providing new avenues for fertility restoration. Specifically, we will examine the historical development, technological innovations, and scientific research related to the creation of 3D-engineered tissues for reconstructing the female reproductive system. Impact Statement This review aims to summarize the growing body of evidence surrounding bioengineering strategies, platforms, and therapies in female reproductive medicine, with the goal of advancing our understanding of female reproductive biology and providing new avenues for fertility restoration. Specifically, the historical development, technological innovations, and scientific research related to the 3D-engineered tissues for reconstructing the female reproductive system were summarized. This review would help the audience, especially bioengineers who study the female reproductive system disease, as well as obstetricians and gynecologists, understand the possible application of additive manufacturing and acquire the strategies to engineer the female reproductive system <i>in vitro</i>.</p>\",\"PeriodicalId\":23134,\"journal\":{\"name\":\"Tissue Engineering. Part B, Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Engineering. Part B, Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/19373341251359111\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering. Part B, Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/19373341251359111","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Revolutionizing the Female Reproductive System Research with Additive Manufacturing.
The female reproductive system is highly complex, making it essential for applied research and translational medicine to accurately model its intricate physiological functions or develop strategies for restoring them. However, significant structural and functional differences between human and animal models, along with the limitations of static 2D cell culture technologies, underscore the need for more dynamic and sophisticated in vitro platforms, as well as in vivo therapies. These advancements are critical for deepening our understanding of reproductive biology and supporting clinical applications. Recent advancements in additive manufacturing technology have opened new frontiers in the study of the female reproductive system. By introducing diverse preclinical models and expanding the range of potential applications, this field has reached new heights, with the rapidly evolving research paradigm reshaping the scientific landscape. This review aims to summarize the growing body of evidence surrounding bioengineering strategies, platforms, and therapies in female reproductive medicine, with the goal of advancing our understanding of female reproductive biology and providing new avenues for fertility restoration. Specifically, we will examine the historical development, technological innovations, and scientific research related to the creation of 3D-engineered tissues for reconstructing the female reproductive system. Impact Statement This review aims to summarize the growing body of evidence surrounding bioengineering strategies, platforms, and therapies in female reproductive medicine, with the goal of advancing our understanding of female reproductive biology and providing new avenues for fertility restoration. Specifically, the historical development, technological innovations, and scientific research related to the 3D-engineered tissues for reconstructing the female reproductive system were summarized. This review would help the audience, especially bioengineers who study the female reproductive system disease, as well as obstetricians and gynecologists, understand the possible application of additive manufacturing and acquire the strategies to engineer the female reproductive system in vitro.
期刊介绍:
Tissue Engineering Reviews (Part B) meets the urgent need for high-quality review articles by presenting critical literature overviews and systematic summaries of research within the field to assess the current standing and future directions within relevant areas and technologies. Part B publishes bi-monthly.