建立一个可解释的基于MRI放射学的机器学习模型,能够预测浸润性乳腺癌腋窝淋巴结转移。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Dingyi Zhang, Mengyi Shen, Li Zhang, Xin He, Xiaohua Huang
{"title":"建立一个可解释的基于MRI放射学的机器学习模型,能够预测浸润性乳腺癌腋窝淋巴结转移。","authors":"Dingyi Zhang, Mengyi Shen, Li Zhang, Xin He, Xiaohua Huang","doi":"10.1038/s41598-025-10818-0","DOIUrl":null,"url":null,"abstract":"<p><p>This study sought to develop a radiomics model capable of predicting axillary lymph node metastasis (ALNM) in patients with invasive breast cancer (IBC) based on dual-sequence magnetic resonance imaging(MRI) of diffusion-weighted imaging (DWI) and dynamic contrast enhancement (DCE) data. The interpretability of the resultant model was probed with the SHAP (Shapley Additive Explanations) method. Established inclusion/exclusion criteria were used to retrospectively compile MRI and matching clinical data from 183 patients with pathologically confirmed IBC from our hospital evaluated between June 2021 and December 2023. All of these patients had undergone plain and enhanced MRI scans prior to treatment. These patients were separated according to their pathological biopsy results into those with ALNM (n = 107) and those without ALNM (n = 76). These patients were then randomized into training (n = 128) and testing (n = 55) cohorts at a 7:3 ratio. Optimal radiomics features were selected from the extracted data. The random forest method was used to establish three predictive models (DWI, DCE, and combined DWI + DCE sequence models). Area under the curve (AUC) values for receiver operating characteristic (ROC) curves were utilized to assess model performance. The DeLong test was utilized to compare model predictive efficacy. Model discrimination was assessed based on the integrated discrimination improvement (IDI) method. Decision curves revealed net clinical benefits for each of these models. The SHAP method was used to achieve the best model interpretability. Clinicopathological characteristics (age, menopausal status, molecular subtypes, and estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, and Ki-67 status) were comparable when comparing the ALNM and non-ALNM groups as well as the training and testing cohorts (P > 0.05). AUC values for the DWI, DCE, and combined models in the training cohort were 0.793, 0.774, and 0.864, respectively, with corresponding values of 0.728, 0.760, and 0.859 in the testing cohort. The predictive efficacy of the DWI and combined models was found to differ significantly according to the DeLong test, as did the predictive efficacy of the DCE and combined models in the training groups (P < 0.05), while no other significant differences were noted in model performance (P > 0.05). IDI results indicated that the combined model offered predictive power levels that were 13.5% (P < 0.05) and 10.2% (P < 0.05) higher than those for the respective DWI and DCE models. In a decision curve analysis, the combined model offered a net clinical benefit over the DCE model. The combined dual-sequence MRI-based radiomics model constructed herein and the supporting interpretability analyses can aid in the prediction of the ALNM status of IBC patients, helping to guide clinical decision-making in these cases.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"26030"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12271558/pdf/","citationCount":"0","resultStr":"{\"title\":\"Establishment of an interpretable MRI radiomics-based machine learning model capable of predicting axillary lymph node metastasis in invasive breast cancer.\",\"authors\":\"Dingyi Zhang, Mengyi Shen, Li Zhang, Xin He, Xiaohua Huang\",\"doi\":\"10.1038/s41598-025-10818-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study sought to develop a radiomics model capable of predicting axillary lymph node metastasis (ALNM) in patients with invasive breast cancer (IBC) based on dual-sequence magnetic resonance imaging(MRI) of diffusion-weighted imaging (DWI) and dynamic contrast enhancement (DCE) data. The interpretability of the resultant model was probed with the SHAP (Shapley Additive Explanations) method. Established inclusion/exclusion criteria were used to retrospectively compile MRI and matching clinical data from 183 patients with pathologically confirmed IBC from our hospital evaluated between June 2021 and December 2023. All of these patients had undergone plain and enhanced MRI scans prior to treatment. These patients were separated according to their pathological biopsy results into those with ALNM (n = 107) and those without ALNM (n = 76). These patients were then randomized into training (n = 128) and testing (n = 55) cohorts at a 7:3 ratio. Optimal radiomics features were selected from the extracted data. The random forest method was used to establish three predictive models (DWI, DCE, and combined DWI + DCE sequence models). Area under the curve (AUC) values for receiver operating characteristic (ROC) curves were utilized to assess model performance. The DeLong test was utilized to compare model predictive efficacy. Model discrimination was assessed based on the integrated discrimination improvement (IDI) method. Decision curves revealed net clinical benefits for each of these models. The SHAP method was used to achieve the best model interpretability. Clinicopathological characteristics (age, menopausal status, molecular subtypes, and estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, and Ki-67 status) were comparable when comparing the ALNM and non-ALNM groups as well as the training and testing cohorts (P > 0.05). AUC values for the DWI, DCE, and combined models in the training cohort were 0.793, 0.774, and 0.864, respectively, with corresponding values of 0.728, 0.760, and 0.859 in the testing cohort. The predictive efficacy of the DWI and combined models was found to differ significantly according to the DeLong test, as did the predictive efficacy of the DCE and combined models in the training groups (P < 0.05), while no other significant differences were noted in model performance (P > 0.05). IDI results indicated that the combined model offered predictive power levels that were 13.5% (P < 0.05) and 10.2% (P < 0.05) higher than those for the respective DWI and DCE models. In a decision curve analysis, the combined model offered a net clinical benefit over the DCE model. The combined dual-sequence MRI-based radiomics model constructed herein and the supporting interpretability analyses can aid in the prediction of the ALNM status of IBC patients, helping to guide clinical decision-making in these cases.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"26030\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12271558/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-10818-0\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-10818-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在建立一种基于双序列磁共振成像(MRI)扩散加权成像(DWI)和动态对比增强(DCE)数据预测浸润性乳腺癌(IBC)患者腋窝淋巴结转移(ALNM)的放射组学模型。用Shapley加性解释(Shapley Additive explanatory)方法探讨了所得模型的可解释性。采用已建立的纳入/排除标准,回顾性编制了我院于2021年6月至2023年12月评估的183例病理证实的IBC患者的MRI和匹配临床资料。所有这些患者在治疗前都进行了普通和增强MRI扫描。根据病理活检结果将患者分为有ALNM组(n = 107)和无ALNM组(n = 76)。然后将这些患者按7:3的比例随机分为训练组(n = 128)和测试组(n = 55)。从提取的数据中选择最佳放射组学特征。采用随机森林方法建立了DWI、DCE和DWI + DCE组合序列模型3种预测模型。使用受试者工作特征曲线的曲线下面积(AUC)值来评估模型的性能。采用DeLong检验比较模型预测效果。基于综合判别改进(IDI)方法对模型判别进行评价。决策曲线显示了每种模型的净临床效益。采用SHAP方法获得最佳的模型可解释性。ALNM组和非ALNM组以及训练组和测试组的临床病理特征(年龄、绝经状态、分子亚型、雌激素受体、孕激素受体、人表皮生长因子受体2和Ki-67状态)具有可比性(P < 0.05)。训练组DWI、DCE和组合模型的AUC值分别为0.793、0.774和0.864,测试组DWI、DCE和组合模型的AUC值分别为0.728、0.760和0.859。DeLong检验发现DWI和联合模型的预测效果有显著差异,训练组DCE和联合模型的预测效果也有显著差异(P < 0.05)。IDI结果表明,联合模型的预测能力水平为13.5% (P
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Establishment of an interpretable MRI radiomics-based machine learning model capable of predicting axillary lymph node metastasis in invasive breast cancer.

Establishment of an interpretable MRI radiomics-based machine learning model capable of predicting axillary lymph node metastasis in invasive breast cancer.

Establishment of an interpretable MRI radiomics-based machine learning model capable of predicting axillary lymph node metastasis in invasive breast cancer.

Establishment of an interpretable MRI radiomics-based machine learning model capable of predicting axillary lymph node metastasis in invasive breast cancer.

This study sought to develop a radiomics model capable of predicting axillary lymph node metastasis (ALNM) in patients with invasive breast cancer (IBC) based on dual-sequence magnetic resonance imaging(MRI) of diffusion-weighted imaging (DWI) and dynamic contrast enhancement (DCE) data. The interpretability of the resultant model was probed with the SHAP (Shapley Additive Explanations) method. Established inclusion/exclusion criteria were used to retrospectively compile MRI and matching clinical data from 183 patients with pathologically confirmed IBC from our hospital evaluated between June 2021 and December 2023. All of these patients had undergone plain and enhanced MRI scans prior to treatment. These patients were separated according to their pathological biopsy results into those with ALNM (n = 107) and those without ALNM (n = 76). These patients were then randomized into training (n = 128) and testing (n = 55) cohorts at a 7:3 ratio. Optimal radiomics features were selected from the extracted data. The random forest method was used to establish three predictive models (DWI, DCE, and combined DWI + DCE sequence models). Area under the curve (AUC) values for receiver operating characteristic (ROC) curves were utilized to assess model performance. The DeLong test was utilized to compare model predictive efficacy. Model discrimination was assessed based on the integrated discrimination improvement (IDI) method. Decision curves revealed net clinical benefits for each of these models. The SHAP method was used to achieve the best model interpretability. Clinicopathological characteristics (age, menopausal status, molecular subtypes, and estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, and Ki-67 status) were comparable when comparing the ALNM and non-ALNM groups as well as the training and testing cohorts (P > 0.05). AUC values for the DWI, DCE, and combined models in the training cohort were 0.793, 0.774, and 0.864, respectively, with corresponding values of 0.728, 0.760, and 0.859 in the testing cohort. The predictive efficacy of the DWI and combined models was found to differ significantly according to the DeLong test, as did the predictive efficacy of the DCE and combined models in the training groups (P < 0.05), while no other significant differences were noted in model performance (P > 0.05). IDI results indicated that the combined model offered predictive power levels that were 13.5% (P < 0.05) and 10.2% (P < 0.05) higher than those for the respective DWI and DCE models. In a decision curve analysis, the combined model offered a net clinical benefit over the DCE model. The combined dual-sequence MRI-based radiomics model constructed herein and the supporting interpretability analyses can aid in the prediction of the ALNM status of IBC patients, helping to guide clinical decision-making in these cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信