{"title":"一个轻量级框架,用于保护云环境中资源有限的物联网设备。","authors":"Vivek Kumar Pandey, Dinesh Sahu, Shiv Prakash, Rajkumar Singh Rathore, Pratibha Dixit, Iryna Hunko","doi":"10.1038/s41598-025-09885-0","DOIUrl":null,"url":null,"abstract":"<p><p>Billions of IoT devices increasingly function as gateways to cloud infrastructures, making them an inevitable target of cyber threats because of the limited resources and low processing capabilities of IoT devices. This paper proposes a lightweight decision tree-based intrusion detection framework suitable for real-time anomaly detection in a resource-constrained IoT environment. Finally, the model also makes use of a novel leaf-cut feature optimization strategy and tight adaptive cloud edge intelligence to achieve high accuracy while minimizing memory and computation demand. In terms of memory, they also use only 12.5 MB in it and evaluated on benchmark datasets including NSL-KDD and Bot-IoT, it gives an accuracy of 98.2% and 97.9%, respectively, and less than 1% false positives, thereby giving up to 6.8% accuracy over some traditional models such as SVM and Neural Networks and up to 78% less energy. It is deployed on Raspberry Pi nodes and can do real-time inference in less than 1 ms and 1,250 samples/sec. Due to the energy efficient, scalable, and interpretable architecture of the proposed solution, it can be implemented as a security solution for IoT use cases in Smart cities, industrial automation, health care, and autonomous vehicles.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"26009"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12271337/pdf/","citationCount":"0","resultStr":"{\"title\":\"A lightweight framework to secure IoT devices with limited resources in cloud environments.\",\"authors\":\"Vivek Kumar Pandey, Dinesh Sahu, Shiv Prakash, Rajkumar Singh Rathore, Pratibha Dixit, Iryna Hunko\",\"doi\":\"10.1038/s41598-025-09885-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Billions of IoT devices increasingly function as gateways to cloud infrastructures, making them an inevitable target of cyber threats because of the limited resources and low processing capabilities of IoT devices. This paper proposes a lightweight decision tree-based intrusion detection framework suitable for real-time anomaly detection in a resource-constrained IoT environment. Finally, the model also makes use of a novel leaf-cut feature optimization strategy and tight adaptive cloud edge intelligence to achieve high accuracy while minimizing memory and computation demand. In terms of memory, they also use only 12.5 MB in it and evaluated on benchmark datasets including NSL-KDD and Bot-IoT, it gives an accuracy of 98.2% and 97.9%, respectively, and less than 1% false positives, thereby giving up to 6.8% accuracy over some traditional models such as SVM and Neural Networks and up to 78% less energy. It is deployed on Raspberry Pi nodes and can do real-time inference in less than 1 ms and 1,250 samples/sec. Due to the energy efficient, scalable, and interpretable architecture of the proposed solution, it can be implemented as a security solution for IoT use cases in Smart cities, industrial automation, health care, and autonomous vehicles.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"26009\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12271337/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-09885-0\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-09885-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A lightweight framework to secure IoT devices with limited resources in cloud environments.
Billions of IoT devices increasingly function as gateways to cloud infrastructures, making them an inevitable target of cyber threats because of the limited resources and low processing capabilities of IoT devices. This paper proposes a lightweight decision tree-based intrusion detection framework suitable for real-time anomaly detection in a resource-constrained IoT environment. Finally, the model also makes use of a novel leaf-cut feature optimization strategy and tight adaptive cloud edge intelligence to achieve high accuracy while minimizing memory and computation demand. In terms of memory, they also use only 12.5 MB in it and evaluated on benchmark datasets including NSL-KDD and Bot-IoT, it gives an accuracy of 98.2% and 97.9%, respectively, and less than 1% false positives, thereby giving up to 6.8% accuracy over some traditional models such as SVM and Neural Networks and up to 78% less energy. It is deployed on Raspberry Pi nodes and can do real-time inference in less than 1 ms and 1,250 samples/sec. Due to the energy efficient, scalable, and interpretable architecture of the proposed solution, it can be implemented as a security solution for IoT use cases in Smart cities, industrial automation, health care, and autonomous vehicles.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.