巯基壳聚糖包覆TPGSylated纳米金刚石的构建与表征。

IF 0.7 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Dandan Liu, Zhiyuan Yang, Yue Lu, Weiwei Yang
{"title":"巯基壳聚糖包覆TPGSylated纳米金刚石的构建与表征。","authors":"Dandan Liu, Zhiyuan Yang, Yue Lu, Weiwei Yang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Low water solubility and poor intestinal permeability hinder the oral absorption of curcumin (CUR). To address this, we designed a core-shell structured nanoparticle based on nanodiamonds (NDs) and thiolated chitosan (TCS). First, D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) covalently modified NDs were prepared and loaded with CUR (CUR@NDs-TPGS). N-acetylcysteine (NAC) was then coupled to chitosan (CS) to obtain positively charged CS-NAC, which electrostatically coated the negatively charged NDs-TPGS/CUR. Particle size (PS), zeta potential (ZP) and drug loading efficiency (DLE) were selected as screening indices to optimize the formulation and preparation process of CUR@NDs-TPGS/CS-NAC via single-factor experiments. The results showed that after coating with CS-NAC, the PS of optimized CUR@NDs-TPGS/CS-NAC increased from 183.63±5.24 nm to 245.24±3.95 nm, the ZP value flipped from -25.47±1.36 to +25.81±1.06 and the DLE value decreased slightly. Moreover, the nanoparticles adopted a spherical morphology and the cumulative release percentage of the nanocomplexes within 24 h decreased from 35.69% to 25.54% after coating. CUR@NDs-TPGS/CS-NAC remained stable within 48 h in simulated intestinal fluid. Mucin adsorption, GI retention and oral absorption of CUR@NDs-TPGS/CS-NAC were further enhanced compared to CUR@NDs-TPGS. These findings suggest that CUR@NDs-TPGS/CS-NAC is a promising carrier for oral delivery of CUR.</p>","PeriodicalId":19971,"journal":{"name":"Pakistan journal of pharmaceutical sciences","volume":"38 3","pages":"1095-1105"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction and characterization of thiolated chitosan coated TPGSylated nanodiamonds for oral delivery of curcumin.\",\"authors\":\"Dandan Liu, Zhiyuan Yang, Yue Lu, Weiwei Yang\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Low water solubility and poor intestinal permeability hinder the oral absorption of curcumin (CUR). To address this, we designed a core-shell structured nanoparticle based on nanodiamonds (NDs) and thiolated chitosan (TCS). First, D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) covalently modified NDs were prepared and loaded with CUR (CUR@NDs-TPGS). N-acetylcysteine (NAC) was then coupled to chitosan (CS) to obtain positively charged CS-NAC, which electrostatically coated the negatively charged NDs-TPGS/CUR. Particle size (PS), zeta potential (ZP) and drug loading efficiency (DLE) were selected as screening indices to optimize the formulation and preparation process of CUR@NDs-TPGS/CS-NAC via single-factor experiments. The results showed that after coating with CS-NAC, the PS of optimized CUR@NDs-TPGS/CS-NAC increased from 183.63±5.24 nm to 245.24±3.95 nm, the ZP value flipped from -25.47±1.36 to +25.81±1.06 and the DLE value decreased slightly. Moreover, the nanoparticles adopted a spherical morphology and the cumulative release percentage of the nanocomplexes within 24 h decreased from 35.69% to 25.54% after coating. CUR@NDs-TPGS/CS-NAC remained stable within 48 h in simulated intestinal fluid. Mucin adsorption, GI retention and oral absorption of CUR@NDs-TPGS/CS-NAC were further enhanced compared to CUR@NDs-TPGS. These findings suggest that CUR@NDs-TPGS/CS-NAC is a promising carrier for oral delivery of CUR.</p>\",\"PeriodicalId\":19971,\"journal\":{\"name\":\"Pakistan journal of pharmaceutical sciences\",\"volume\":\"38 3\",\"pages\":\"1095-1105\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pakistan journal of pharmaceutical sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pakistan journal of pharmaceutical sciences","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

低水溶性和肠道渗透性差阻碍了姜黄素(CUR)的口服吸收。为了解决这个问题,我们设计了一种基于纳米金刚石(NDs)和硫代壳聚糖(TCS)的核壳结构纳米粒子。首先,制备D-α-生育酚聚乙二醇1000琥珀酸酯(TPGS)共价修饰的nd,并负载CUR (CUR@NDs-TPGS)。将n -乙酰半胱氨酸(NAC)与壳聚糖(CS)偶联得到带正电的CS-NAC,并将其静电包覆在带负电的NDs-TPGS/CUR上。以粒径(PS)、ζ电位(ZP)和载药效率(DLE)为筛选指标,通过单因素实验优化CUR@NDs-TPGS/CS-NAC的处方和制备工艺。结果表明:经CS-NAC涂层后,优化后的CUR@NDs-TPGS/CS-NAC的PS从183.63±5.24 nm增加到245.24±3.95 nm, ZP值从-25.47±1.36变为+25.81±1.06,DLE值略有下降。包覆后纳米配合物在24 h内的累积释放率由35.69%降至25.54%。CUR@NDs-TPGS/CS-NAC在模拟肠液中48 h内保持稳定。与CUR@NDs-TPGS相比,CUR@NDs-TPGS/CS-NAC的粘蛋白吸附、GI滞留和口服吸收进一步增强。这些发现表明CUR@NDs-TPGS/CS-NAC是一种很有前途的口服给药载体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction and characterization of thiolated chitosan coated TPGSylated nanodiamonds for oral delivery of curcumin.

Low water solubility and poor intestinal permeability hinder the oral absorption of curcumin (CUR). To address this, we designed a core-shell structured nanoparticle based on nanodiamonds (NDs) and thiolated chitosan (TCS). First, D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) covalently modified NDs were prepared and loaded with CUR (CUR@NDs-TPGS). N-acetylcysteine (NAC) was then coupled to chitosan (CS) to obtain positively charged CS-NAC, which electrostatically coated the negatively charged NDs-TPGS/CUR. Particle size (PS), zeta potential (ZP) and drug loading efficiency (DLE) were selected as screening indices to optimize the formulation and preparation process of CUR@NDs-TPGS/CS-NAC via single-factor experiments. The results showed that after coating with CS-NAC, the PS of optimized CUR@NDs-TPGS/CS-NAC increased from 183.63±5.24 nm to 245.24±3.95 nm, the ZP value flipped from -25.47±1.36 to +25.81±1.06 and the DLE value decreased slightly. Moreover, the nanoparticles adopted a spherical morphology and the cumulative release percentage of the nanocomplexes within 24 h decreased from 35.69% to 25.54% after coating. CUR@NDs-TPGS/CS-NAC remained stable within 48 h in simulated intestinal fluid. Mucin adsorption, GI retention and oral absorption of CUR@NDs-TPGS/CS-NAC were further enhanced compared to CUR@NDs-TPGS. These findings suggest that CUR@NDs-TPGS/CS-NAC is a promising carrier for oral delivery of CUR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
211
审稿时长
4.5 months
期刊介绍: Pakistan Journal of Pharmaceutical Sciences (PJPS) is a peer reviewed multi-disciplinary pharmaceutical sciences journal. The PJPS had its origin in 1988 from the Faculty of Pharmacy, University of Karachi as a biannual journal, frequency converted as quarterly in 2005, and now PJPS is being published as bi-monthly from January 2013. PJPS covers Biological, Pharmaceutical and Medicinal Research (Drug Delivery, Pharmacy Management, Molecular Biology, Biochemical, Pharmacology, Pharmacokinetics, Phytochemical, Bio-analytical, Therapeutics, Biotechnology and research on nano particles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信