区隔化皱褶质膜的张力-面积关系:一个机制模型及其意义。

IF 2.7 3区 医学 Q2 BIOPHYSICS
Andrey K Tsaturyan
{"title":"区隔化皱褶质膜的张力-面积关系:一个机制模型及其意义。","authors":"Andrey K Tsaturyan","doi":"10.1007/s10237-025-01992-1","DOIUrl":null,"url":null,"abstract":"<p><p>The plasma membrane is a liquid lipid bilayer containing both dissolved proteins and proteins anchoring the membrane to the underlying actin cortex. Membrane tension, a 2D analog of pressure in a 3D liquid, is believed to play a crucial role in organizing essential processes within cells and tissues. This, along with recent, conflicting data on the speed of membrane tension propagation, highlights the need for a comprehensive mechanical model to describe tension in the cortex-anchored plasma membrane as a function of transmembrane hydrostatic pressure difference and excess membrane area due to cortex contraction. In this study, we present a mechanical model of plasma membrane compartments, separated by \"picket fences\" of cortex-anchoring proteins permeable to lipids. Beyond hydrostatic pressure, the model incorporates the 2D osmotic pressure exerted by membrane-dissolved proteins. Our findings reveal that the tension-area relationship within a membrane compartment exhibits a seemingly paradoxical feature: in a specific range of membrane surface area, an increase in area leads to a rise in tension. We further model the tension-area relationship for an ensemble of membrane compartments, which exchange membrane area through shared borders, and discuss potential biological implications of this model.</p>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tension-area relationship in compartmentalized crumpled plasma membrane: a mechanistic model and its implications.\",\"authors\":\"Andrey K Tsaturyan\",\"doi\":\"10.1007/s10237-025-01992-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The plasma membrane is a liquid lipid bilayer containing both dissolved proteins and proteins anchoring the membrane to the underlying actin cortex. Membrane tension, a 2D analog of pressure in a 3D liquid, is believed to play a crucial role in organizing essential processes within cells and tissues. This, along with recent, conflicting data on the speed of membrane tension propagation, highlights the need for a comprehensive mechanical model to describe tension in the cortex-anchored plasma membrane as a function of transmembrane hydrostatic pressure difference and excess membrane area due to cortex contraction. In this study, we present a mechanical model of plasma membrane compartments, separated by \\\"picket fences\\\" of cortex-anchoring proteins permeable to lipids. Beyond hydrostatic pressure, the model incorporates the 2D osmotic pressure exerted by membrane-dissolved proteins. Our findings reveal that the tension-area relationship within a membrane compartment exhibits a seemingly paradoxical feature: in a specific range of membrane surface area, an increase in area leads to a rise in tension. We further model the tension-area relationship for an ensemble of membrane compartments, which exchange membrane area through shared borders, and discuss potential biological implications of this model.</p>\",\"PeriodicalId\":489,\"journal\":{\"name\":\"Biomechanics and Modeling in Mechanobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomechanics and Modeling in Mechanobiology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10237-025-01992-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10237-025-01992-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

质膜是一种液体脂质双分子层,包含溶解的蛋白质和将膜固定在肌动蛋白皮层上的蛋白质。膜张力是三维液体中压力的二维模拟物,被认为在组织细胞和组织内的基本过程中起着至关重要的作用。这一点,以及最近关于膜张力传播速度的相互矛盾的数据,突出了需要一个全面的力学模型来描述皮层锚定质膜中的张力作为跨膜静水压力差和皮层收缩引起的过量膜面积的函数。在这项研究中,我们提出了一个质膜室的力学模型,由可渗透脂质的皮质锚定蛋白的“尖桩栅栏”隔开。除了静水压力外,该模型还包含了膜溶解蛋白施加的二维渗透压。我们的研究结果表明,膜室内的张力-面积关系表现出一种看似矛盾的特征:在膜表面积的特定范围内,面积的增加导致张力的上升。我们进一步模拟了通过共享边界交换膜面积的膜室集合的张力-面积关系,并讨论了该模型的潜在生物学意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tension-area relationship in compartmentalized crumpled plasma membrane: a mechanistic model and its implications.

The plasma membrane is a liquid lipid bilayer containing both dissolved proteins and proteins anchoring the membrane to the underlying actin cortex. Membrane tension, a 2D analog of pressure in a 3D liquid, is believed to play a crucial role in organizing essential processes within cells and tissues. This, along with recent, conflicting data on the speed of membrane tension propagation, highlights the need for a comprehensive mechanical model to describe tension in the cortex-anchored plasma membrane as a function of transmembrane hydrostatic pressure difference and excess membrane area due to cortex contraction. In this study, we present a mechanical model of plasma membrane compartments, separated by "picket fences" of cortex-anchoring proteins permeable to lipids. Beyond hydrostatic pressure, the model incorporates the 2D osmotic pressure exerted by membrane-dissolved proteins. Our findings reveal that the tension-area relationship within a membrane compartment exhibits a seemingly paradoxical feature: in a specific range of membrane surface area, an increase in area leads to a rise in tension. We further model the tension-area relationship for an ensemble of membrane compartments, which exchange membrane area through shared borders, and discuss potential biological implications of this model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomechanics and Modeling in Mechanobiology
Biomechanics and Modeling in Mechanobiology 工程技术-工程:生物医学
CiteScore
7.10
自引率
8.60%
发文量
119
审稿时长
6 months
期刊介绍: Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that (1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury, (2) identify and quantify mechanosensitive responses and their mechanisms, (3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and (4) report discoveries that advance therapeutic and diagnostic procedures. Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信