Lei Ge, Yuqing Gao, Feifei Du, Chiyuan Ma, Tianxia Xiao, Yali Yang, Xiaohua Lei, Jian V. Zhang
{"title":"增强的OXPHOS和线粒体超极化在模拟微重力诱导的卵母细胞成熟停滞中的关键作用。","authors":"Lei Ge, Yuqing Gao, Feifei Du, Chiyuan Ma, Tianxia Xiao, Yali Yang, Xiaohua Lei, Jian V. Zhang","doi":"10.1002/advs.202505570","DOIUrl":null,"url":null,"abstract":"<p>Meiosis is essential for sexual reproduction, yet the impact of microgravity on oocyte maturation remains unclear, raising concerns for reproductive success in space environments. Here, it is examined the effects of simulated microgravity (SMG) on mouse oocytes and found that SMG impaired mitochondrial function, evidenced by elevated oxidative phosphorylation and mitochondrial membrane hyperpolarization, resulting in meiotic arrest. This response is distinct from that induced by other stressors or seen in somatic cells under microgravity, highlighting the unique sensitivity of oocytes. SMG also caused mitochondrial mislocalization, which activated the unfolded protein response and suppressed mitochondrial gene expression. Despite accelerating meiotic progression, SMG delayed microtubule-organizing center (MTOC) coalescence. This misalignment led to spindle defects, reduced polar body extrusion, and increased aneuploidy, compromising oocyte quality. The spindle assembly checkpoint (SAC) remained functional, suggesting mitochondrial dysregulation-not SAC failure-drives meiotic acceleration. Notably, even oocytes that reached maturation under SMG exhibited polarity loss and reduced developmental potential. Extending metaphase I by inhibiting the anaphase-promoting complex rescued MTOC assembly and spindle formation, significantly improving maturation rates. These findings identify mitochondrial dysfunction as a key mediator of SMG-induced meiotic failure and propose M-phase regulation as a strategy to safeguard female fertility in space environments.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 38","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202505570","citationCount":"0","resultStr":"{\"title\":\"The Critical Role of Enhanced OXPHOS and Mitochondrial Hyperpolarization in Simulated Microgravity-Induced Oocyte Maturation Arrest\",\"authors\":\"Lei Ge, Yuqing Gao, Feifei Du, Chiyuan Ma, Tianxia Xiao, Yali Yang, Xiaohua Lei, Jian V. Zhang\",\"doi\":\"10.1002/advs.202505570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Meiosis is essential for sexual reproduction, yet the impact of microgravity on oocyte maturation remains unclear, raising concerns for reproductive success in space environments. Here, it is examined the effects of simulated microgravity (SMG) on mouse oocytes and found that SMG impaired mitochondrial function, evidenced by elevated oxidative phosphorylation and mitochondrial membrane hyperpolarization, resulting in meiotic arrest. This response is distinct from that induced by other stressors or seen in somatic cells under microgravity, highlighting the unique sensitivity of oocytes. SMG also caused mitochondrial mislocalization, which activated the unfolded protein response and suppressed mitochondrial gene expression. Despite accelerating meiotic progression, SMG delayed microtubule-organizing center (MTOC) coalescence. This misalignment led to spindle defects, reduced polar body extrusion, and increased aneuploidy, compromising oocyte quality. The spindle assembly checkpoint (SAC) remained functional, suggesting mitochondrial dysregulation-not SAC failure-drives meiotic acceleration. Notably, even oocytes that reached maturation under SMG exhibited polarity loss and reduced developmental potential. Extending metaphase I by inhibiting the anaphase-promoting complex rescued MTOC assembly and spindle formation, significantly improving maturation rates. These findings identify mitochondrial dysfunction as a key mediator of SMG-induced meiotic failure and propose M-phase regulation as a strategy to safeguard female fertility in space environments.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 38\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202505570\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202505570\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202505570","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The Critical Role of Enhanced OXPHOS and Mitochondrial Hyperpolarization in Simulated Microgravity-Induced Oocyte Maturation Arrest
Meiosis is essential for sexual reproduction, yet the impact of microgravity on oocyte maturation remains unclear, raising concerns for reproductive success in space environments. Here, it is examined the effects of simulated microgravity (SMG) on mouse oocytes and found that SMG impaired mitochondrial function, evidenced by elevated oxidative phosphorylation and mitochondrial membrane hyperpolarization, resulting in meiotic arrest. This response is distinct from that induced by other stressors or seen in somatic cells under microgravity, highlighting the unique sensitivity of oocytes. SMG also caused mitochondrial mislocalization, which activated the unfolded protein response and suppressed mitochondrial gene expression. Despite accelerating meiotic progression, SMG delayed microtubule-organizing center (MTOC) coalescence. This misalignment led to spindle defects, reduced polar body extrusion, and increased aneuploidy, compromising oocyte quality. The spindle assembly checkpoint (SAC) remained functional, suggesting mitochondrial dysregulation-not SAC failure-drives meiotic acceleration. Notably, even oocytes that reached maturation under SMG exhibited polarity loss and reduced developmental potential. Extending metaphase I by inhibiting the anaphase-promoting complex rescued MTOC assembly and spindle formation, significantly improving maturation rates. These findings identify mitochondrial dysfunction as a key mediator of SMG-induced meiotic failure and propose M-phase regulation as a strategy to safeguard female fertility in space environments.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.