基于循环肿瘤细胞单细胞代谢谱的肺癌转移风险预测

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yang Xu, Xuesen Hu, Yuan Yuan, Wenwen Liu, Jian Wang, Chunhui Yang, Xianzhe Shi, Wangshu Qin, Liliang Wen, Manqing Lin, Yinuo Jin, Wei Wang, Chunxiu Hu, Guowang Xu, Qi Wang
{"title":"基于循环肿瘤细胞单细胞代谢谱的肺癌转移风险预测","authors":"Yang Xu,&nbsp;Xuesen Hu,&nbsp;Yuan Yuan,&nbsp;Wenwen Liu,&nbsp;Jian Wang,&nbsp;Chunhui Yang,&nbsp;Xianzhe Shi,&nbsp;Wangshu Qin,&nbsp;Liliang Wen,&nbsp;Manqing Lin,&nbsp;Yinuo Jin,&nbsp;Wei Wang,&nbsp;Chunxiu Hu,&nbsp;Guowang Xu,&nbsp;Qi Wang","doi":"10.1002/advs.202508878","DOIUrl":null,"url":null,"abstract":"<p>Lung cancer metastasis is a leading cause of cancer-related mortality, necessitating innovative approaches for early prediction and personalized clinical management. A novel strategy is present to predict lung cancer metastasis risk by combining single-cell metabolic profiling of circulating tumor cells (CTCs) with a self-developed CTC sorting and capture platform, enabling high-efficiency, high-viability CTC isolation from blood. Using nanoelectrospray ionization-atmospheric pressure chemical ionization mass spectrometry, single-cell metabolomic profiling on 301 CTCs derived from patients and animal models are performed. 390 unique metabolites are identified and discovered distinct metabolic signatures associated with different metastatic potentials (brain and bone). Based on these metabolic profiles, a classification model that categorizes CTCs into subgroups with distinct metastatic risks are constructed. The model outperformed traditional clinical indicators and total CTC counts, achieving AUCs of 0.74 (brain metastasis) and 0.92 (bone metastasis). Prospective validation confirmed its metabolite-based classification accuracy for one-year metastasis risk prediction. This study highlights the potential of single-cell metabolomics to uncover novel therapeutic targets and prognostic markers, advancing liquid biopsy from quantitative counting to qualitative analysis. The approach represents a significant advancement in precision medicine for lung cancer management, offering a personalized strategy for predicting metastasis risk and guiding clinical treatment.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 39","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202508878","citationCount":"0","resultStr":"{\"title\":\"Prediction of Lung Cancer Metastasis Risk Based on Single-Cell Metabolic Profiling of Circulating Tumor Cells\",\"authors\":\"Yang Xu,&nbsp;Xuesen Hu,&nbsp;Yuan Yuan,&nbsp;Wenwen Liu,&nbsp;Jian Wang,&nbsp;Chunhui Yang,&nbsp;Xianzhe Shi,&nbsp;Wangshu Qin,&nbsp;Liliang Wen,&nbsp;Manqing Lin,&nbsp;Yinuo Jin,&nbsp;Wei Wang,&nbsp;Chunxiu Hu,&nbsp;Guowang Xu,&nbsp;Qi Wang\",\"doi\":\"10.1002/advs.202508878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lung cancer metastasis is a leading cause of cancer-related mortality, necessitating innovative approaches for early prediction and personalized clinical management. A novel strategy is present to predict lung cancer metastasis risk by combining single-cell metabolic profiling of circulating tumor cells (CTCs) with a self-developed CTC sorting and capture platform, enabling high-efficiency, high-viability CTC isolation from blood. Using nanoelectrospray ionization-atmospheric pressure chemical ionization mass spectrometry, single-cell metabolomic profiling on 301 CTCs derived from patients and animal models are performed. 390 unique metabolites are identified and discovered distinct metabolic signatures associated with different metastatic potentials (brain and bone). Based on these metabolic profiles, a classification model that categorizes CTCs into subgroups with distinct metastatic risks are constructed. The model outperformed traditional clinical indicators and total CTC counts, achieving AUCs of 0.74 (brain metastasis) and 0.92 (bone metastasis). Prospective validation confirmed its metabolite-based classification accuracy for one-year metastasis risk prediction. This study highlights the potential of single-cell metabolomics to uncover novel therapeutic targets and prognostic markers, advancing liquid biopsy from quantitative counting to qualitative analysis. The approach represents a significant advancement in precision medicine for lung cancer management, offering a personalized strategy for predicting metastasis risk and guiding clinical treatment.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 39\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202508878\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202508878\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202508878","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

肺癌转移是癌症相关死亡的主要原因,需要创新的方法进行早期预测和个性化的临床管理。本文提出了一种预测肺癌转移风险的新策略,该策略将循环肿瘤细胞(CTC)的单细胞代谢谱与自主开发的CTC分选和捕获平台相结合,实现了从血液中高效、高活力的CTC分离。采用纳米电喷雾电离-大气压化学电离质谱法,对来自患者和动物模型的301个ctc进行了单细胞代谢组学分析。390种独特的代谢物被鉴定并发现了与不同转移潜能(脑和骨)相关的独特代谢特征。基于这些代谢特征,构建了一个分类模型,将ctc分类为具有不同转移风险的亚组。该模型优于传统临床指标和总CTC计数,脑转移auc为0.74,骨转移auc为0.92。前瞻性验证证实了其基于代谢物的分类准确性,用于预测一年的转移风险。这项研究强调了单细胞代谢组学在揭示新的治疗靶点和预后标志物方面的潜力,将液体活检从定量计数推进到定性分析。该方法代表了精准医学在肺癌治疗方面的重大进步,为预测转移风险和指导临床治疗提供了个性化的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Prediction of Lung Cancer Metastasis Risk Based on Single-Cell Metabolic Profiling of Circulating Tumor Cells

Prediction of Lung Cancer Metastasis Risk Based on Single-Cell Metabolic Profiling of Circulating Tumor Cells

Lung cancer metastasis is a leading cause of cancer-related mortality, necessitating innovative approaches for early prediction and personalized clinical management. A novel strategy is present to predict lung cancer metastasis risk by combining single-cell metabolic profiling of circulating tumor cells (CTCs) with a self-developed CTC sorting and capture platform, enabling high-efficiency, high-viability CTC isolation from blood. Using nanoelectrospray ionization-atmospheric pressure chemical ionization mass spectrometry, single-cell metabolomic profiling on 301 CTCs derived from patients and animal models are performed. 390 unique metabolites are identified and discovered distinct metabolic signatures associated with different metastatic potentials (brain and bone). Based on these metabolic profiles, a classification model that categorizes CTCs into subgroups with distinct metastatic risks are constructed. The model outperformed traditional clinical indicators and total CTC counts, achieving AUCs of 0.74 (brain metastasis) and 0.92 (bone metastasis). Prospective validation confirmed its metabolite-based classification accuracy for one-year metastasis risk prediction. This study highlights the potential of single-cell metabolomics to uncover novel therapeutic targets and prognostic markers, advancing liquid biopsy from quantitative counting to qualitative analysis. The approach represents a significant advancement in precision medicine for lung cancer management, offering a personalized strategy for predicting metastasis risk and guiding clinical treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信