聚合物接枝纳米八面体的超结构相变

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Baixu Zhu, Jun Chen, Ruipeng Li, Jarett Ren, Yi Wang, Yaxu Zhong, Yang Liu, Akira Yasuhara, Mayu Kakefuda, Yoshitaka Aoyama, Thi Vo, Xingchen Ye
{"title":"聚合物接枝纳米八面体的超结构相变","authors":"Baixu Zhu,&nbsp;Jun Chen,&nbsp;Ruipeng Li,&nbsp;Jarett Ren,&nbsp;Yi Wang,&nbsp;Yaxu Zhong,&nbsp;Yang Liu,&nbsp;Akira Yasuhara,&nbsp;Mayu Kakefuda,&nbsp;Yoshitaka Aoyama,&nbsp;Thi Vo,&nbsp;Xingchen Ye","doi":"10.1126/sciadv.adw2740","DOIUrl":null,"url":null,"abstract":"<div >Superlattices of polyhedral nanocrystals exhibit emergent properties defined by their structural arrangements, but native nanocrystal ligands often limit their programmability. Polymeric ligands address this limitation by enabling tunable nanocrystal softness through modifications of polymer molecular weight and grafting density. Here, we investigate phase transitions in polymer-grafted nanooctahedra by varying polymer length, nanocrystal size, truncation, and ligand density. In two-dimensional superlattices, longer polymers or smaller nanooctahedra induce a transition from orientationally ordered to hexagonal rotator lattices. In three-dimensional superlattices, increasing polymer length drives transitions from Minkowski to body-centered cubic and plastic hexagonal close-packed phases, while higher grafting densities further enable transitions to simple hexagonal phases. Polymer brush and thermodynamic perturbation theories, supported by Monte Carlo simulations, uncover the entropic and enthalpic forces that govern these transitions. This work highlights the versatility of polymer-grafted anisotropic nanocrystals as building blocks for designing hierarchical superstructures and metamaterials with customizable properties.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 29","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adw2740","citationCount":"0","resultStr":"{\"title\":\"Superstructural phase transitions in polymer-grafted nanooctahedra\",\"authors\":\"Baixu Zhu,&nbsp;Jun Chen,&nbsp;Ruipeng Li,&nbsp;Jarett Ren,&nbsp;Yi Wang,&nbsp;Yaxu Zhong,&nbsp;Yang Liu,&nbsp;Akira Yasuhara,&nbsp;Mayu Kakefuda,&nbsp;Yoshitaka Aoyama,&nbsp;Thi Vo,&nbsp;Xingchen Ye\",\"doi\":\"10.1126/sciadv.adw2740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Superlattices of polyhedral nanocrystals exhibit emergent properties defined by their structural arrangements, but native nanocrystal ligands often limit their programmability. Polymeric ligands address this limitation by enabling tunable nanocrystal softness through modifications of polymer molecular weight and grafting density. Here, we investigate phase transitions in polymer-grafted nanooctahedra by varying polymer length, nanocrystal size, truncation, and ligand density. In two-dimensional superlattices, longer polymers or smaller nanooctahedra induce a transition from orientationally ordered to hexagonal rotator lattices. In three-dimensional superlattices, increasing polymer length drives transitions from Minkowski to body-centered cubic and plastic hexagonal close-packed phases, while higher grafting densities further enable transitions to simple hexagonal phases. Polymer brush and thermodynamic perturbation theories, supported by Monte Carlo simulations, uncover the entropic and enthalpic forces that govern these transitions. This work highlights the versatility of polymer-grafted anisotropic nanocrystals as building blocks for designing hierarchical superstructures and metamaterials with customizable properties.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 29\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adw2740\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adw2740\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adw2740","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

多面体纳米晶体的超晶格表现出由其结构排列决定的涌现性质,但天然纳米晶体配体往往限制了它们的可编程性。聚合物配体通过改变聚合物分子量和接枝密度来实现可调的纳米晶体柔软度,从而解决了这一限制。在这里,我们通过改变聚合物长度、纳米晶体尺寸、截断和配体密度来研究聚合物接枝纳米八面体的相变。在二维超晶格中,较长的聚合物或较小的纳米八面体诱导从定向有序到六边形旋转晶格的转变。在三维超晶格中,聚合物长度的增加推动了从闵可夫斯基相到体心立方相和塑性六方密排相的转变,而更高的接枝密度进一步促进了向简单六方相的转变。在蒙特卡罗模拟的支持下,聚合物刷和热力学摄动理论揭示了控制这些转变的熵和焓力。这项工作强调了聚合物接枝的各向异性纳米晶体作为设计具有可定制性能的分层超结构和超材料的基石的多功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Superstructural phase transitions in polymer-grafted nanooctahedra

Superstructural phase transitions in polymer-grafted nanooctahedra
Superlattices of polyhedral nanocrystals exhibit emergent properties defined by their structural arrangements, but native nanocrystal ligands often limit their programmability. Polymeric ligands address this limitation by enabling tunable nanocrystal softness through modifications of polymer molecular weight and grafting density. Here, we investigate phase transitions in polymer-grafted nanooctahedra by varying polymer length, nanocrystal size, truncation, and ligand density. In two-dimensional superlattices, longer polymers or smaller nanooctahedra induce a transition from orientationally ordered to hexagonal rotator lattices. In three-dimensional superlattices, increasing polymer length drives transitions from Minkowski to body-centered cubic and plastic hexagonal close-packed phases, while higher grafting densities further enable transitions to simple hexagonal phases. Polymer brush and thermodynamic perturbation theories, supported by Monte Carlo simulations, uncover the entropic and enthalpic forces that govern these transitions. This work highlights the versatility of polymer-grafted anisotropic nanocrystals as building blocks for designing hierarchical superstructures and metamaterials with customizable properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信