Baixu Zhu, Jun Chen, Ruipeng Li, Jarett Ren, Yi Wang, Yaxu Zhong, Yang Liu, Akira Yasuhara, Mayu Kakefuda, Yoshitaka Aoyama, Thi Vo, Xingchen Ye
{"title":"聚合物接枝纳米八面体的超结构相变","authors":"Baixu Zhu, Jun Chen, Ruipeng Li, Jarett Ren, Yi Wang, Yaxu Zhong, Yang Liu, Akira Yasuhara, Mayu Kakefuda, Yoshitaka Aoyama, Thi Vo, Xingchen Ye","doi":"10.1126/sciadv.adw2740","DOIUrl":null,"url":null,"abstract":"<div >Superlattices of polyhedral nanocrystals exhibit emergent properties defined by their structural arrangements, but native nanocrystal ligands often limit their programmability. Polymeric ligands address this limitation by enabling tunable nanocrystal softness through modifications of polymer molecular weight and grafting density. Here, we investigate phase transitions in polymer-grafted nanooctahedra by varying polymer length, nanocrystal size, truncation, and ligand density. In two-dimensional superlattices, longer polymers or smaller nanooctahedra induce a transition from orientationally ordered to hexagonal rotator lattices. In three-dimensional superlattices, increasing polymer length drives transitions from Minkowski to body-centered cubic and plastic hexagonal close-packed phases, while higher grafting densities further enable transitions to simple hexagonal phases. Polymer brush and thermodynamic perturbation theories, supported by Monte Carlo simulations, uncover the entropic and enthalpic forces that govern these transitions. This work highlights the versatility of polymer-grafted anisotropic nanocrystals as building blocks for designing hierarchical superstructures and metamaterials with customizable properties.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 29","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adw2740","citationCount":"0","resultStr":"{\"title\":\"Superstructural phase transitions in polymer-grafted nanooctahedra\",\"authors\":\"Baixu Zhu, Jun Chen, Ruipeng Li, Jarett Ren, Yi Wang, Yaxu Zhong, Yang Liu, Akira Yasuhara, Mayu Kakefuda, Yoshitaka Aoyama, Thi Vo, Xingchen Ye\",\"doi\":\"10.1126/sciadv.adw2740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Superlattices of polyhedral nanocrystals exhibit emergent properties defined by their structural arrangements, but native nanocrystal ligands often limit their programmability. Polymeric ligands address this limitation by enabling tunable nanocrystal softness through modifications of polymer molecular weight and grafting density. Here, we investigate phase transitions in polymer-grafted nanooctahedra by varying polymer length, nanocrystal size, truncation, and ligand density. In two-dimensional superlattices, longer polymers or smaller nanooctahedra induce a transition from orientationally ordered to hexagonal rotator lattices. In three-dimensional superlattices, increasing polymer length drives transitions from Minkowski to body-centered cubic and plastic hexagonal close-packed phases, while higher grafting densities further enable transitions to simple hexagonal phases. Polymer brush and thermodynamic perturbation theories, supported by Monte Carlo simulations, uncover the entropic and enthalpic forces that govern these transitions. This work highlights the versatility of polymer-grafted anisotropic nanocrystals as building blocks for designing hierarchical superstructures and metamaterials with customizable properties.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 29\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adw2740\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adw2740\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adw2740","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Superstructural phase transitions in polymer-grafted nanooctahedra
Superlattices of polyhedral nanocrystals exhibit emergent properties defined by their structural arrangements, but native nanocrystal ligands often limit their programmability. Polymeric ligands address this limitation by enabling tunable nanocrystal softness through modifications of polymer molecular weight and grafting density. Here, we investigate phase transitions in polymer-grafted nanooctahedra by varying polymer length, nanocrystal size, truncation, and ligand density. In two-dimensional superlattices, longer polymers or smaller nanooctahedra induce a transition from orientationally ordered to hexagonal rotator lattices. In three-dimensional superlattices, increasing polymer length drives transitions from Minkowski to body-centered cubic and plastic hexagonal close-packed phases, while higher grafting densities further enable transitions to simple hexagonal phases. Polymer brush and thermodynamic perturbation theories, supported by Monte Carlo simulations, uncover the entropic and enthalpic forces that govern these transitions. This work highlights the versatility of polymer-grafted anisotropic nanocrystals as building blocks for designing hierarchical superstructures and metamaterials with customizable properties.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.