Yang Liu, Ling Cai, Ruichen Rong, Shidan Wang, Liwei Jia, Peiran Quan, Qin Zhou, Guanghua Xiao, Yang Xie
{"title":"基于图像的肿瘤细胞轨迹推断使大规模的癌症进展分析成为可能","authors":"Yang Liu, Ling Cai, Ruichen Rong, Shidan Wang, Liwei Jia, Peiran Quan, Qin Zhou, Guanghua Xiao, Yang Xie","doi":"10.1126/sciadv.adv9466","DOIUrl":null,"url":null,"abstract":"<div >Current approaches to estimating cell trajectories, tumor progression dynamics, and cell population diversity of tumor microenvironment often depend on single-cell RNA sequencing, which is costly and resource intensive. To address this limitation, we developed an artificial intelligence (AI) model that leverages cell morphology features and histological spatial organization to classify tumor cell differentiation status, infer cell dynamic trajectories, and quantify tumor progression from hematoxylin and eosin (H&E)–stained whole-slide images. In three independent lung adenocarcinoma cohorts, our AI-based model accurately predicted cell differential status and provided quantifiable measures of tumor progression that were prognostic of patient survival. Spatial transcriptomic integrative analyses revealed cell components and gene signatures enriched in different cell differentiation statuses. Bulk transcriptomic analyses revealed that fast-progressing tumors exhibit up-regulated cell cycle pathways, while slow-progressing tumors retain characteristics of normal lung epithelium. This cost-effective method enables large-scale analysis of tumor progression dynamics using routinely collected pathology slides and provides insights into intratumor heterogeneity.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 29","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adv9466","citationCount":"0","resultStr":"{\"title\":\"Image-based inference of tumor cell trajectories enables large-scale cancer progression analysis\",\"authors\":\"Yang Liu, Ling Cai, Ruichen Rong, Shidan Wang, Liwei Jia, Peiran Quan, Qin Zhou, Guanghua Xiao, Yang Xie\",\"doi\":\"10.1126/sciadv.adv9466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Current approaches to estimating cell trajectories, tumor progression dynamics, and cell population diversity of tumor microenvironment often depend on single-cell RNA sequencing, which is costly and resource intensive. To address this limitation, we developed an artificial intelligence (AI) model that leverages cell morphology features and histological spatial organization to classify tumor cell differentiation status, infer cell dynamic trajectories, and quantify tumor progression from hematoxylin and eosin (H&E)–stained whole-slide images. In three independent lung adenocarcinoma cohorts, our AI-based model accurately predicted cell differential status and provided quantifiable measures of tumor progression that were prognostic of patient survival. Spatial transcriptomic integrative analyses revealed cell components and gene signatures enriched in different cell differentiation statuses. Bulk transcriptomic analyses revealed that fast-progressing tumors exhibit up-regulated cell cycle pathways, while slow-progressing tumors retain characteristics of normal lung epithelium. This cost-effective method enables large-scale analysis of tumor progression dynamics using routinely collected pathology slides and provides insights into intratumor heterogeneity.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 29\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adv9466\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adv9466\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adv9466","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Image-based inference of tumor cell trajectories enables large-scale cancer progression analysis
Current approaches to estimating cell trajectories, tumor progression dynamics, and cell population diversity of tumor microenvironment often depend on single-cell RNA sequencing, which is costly and resource intensive. To address this limitation, we developed an artificial intelligence (AI) model that leverages cell morphology features and histological spatial organization to classify tumor cell differentiation status, infer cell dynamic trajectories, and quantify tumor progression from hematoxylin and eosin (H&E)–stained whole-slide images. In three independent lung adenocarcinoma cohorts, our AI-based model accurately predicted cell differential status and provided quantifiable measures of tumor progression that were prognostic of patient survival. Spatial transcriptomic integrative analyses revealed cell components and gene signatures enriched in different cell differentiation statuses. Bulk transcriptomic analyses revealed that fast-progressing tumors exhibit up-regulated cell cycle pathways, while slow-progressing tumors retain characteristics of normal lung epithelium. This cost-effective method enables large-scale analysis of tumor progression dynamics using routinely collected pathology slides and provides insights into intratumor heterogeneity.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.