人工智能驱动的皮肤光谱成像能够对危重患者进行即时败血症诊断和结果预测

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Silvia Seidlitz, Katharina Hölzl, Ayca von Garrel, Jan Sellner, Stephan Katzenschlager, Tobias Hölle, Dania Fischer, Maik von der Forst, Felix C. F. Schmitt, Alexander Studier-Fischer, Markus A. Weigand, Lena Maier-Hein, Maximilian Dietrich
{"title":"人工智能驱动的皮肤光谱成像能够对危重患者进行即时败血症诊断和结果预测","authors":"Silvia Seidlitz,&nbsp;Katharina Hölzl,&nbsp;Ayca von Garrel,&nbsp;Jan Sellner,&nbsp;Stephan Katzenschlager,&nbsp;Tobias Hölle,&nbsp;Dania Fischer,&nbsp;Maik von der Forst,&nbsp;Felix C. F. Schmitt,&nbsp;Alexander Studier-Fischer,&nbsp;Markus A. Weigand,&nbsp;Lena Maier-Hein,&nbsp;Maximilian Dietrich","doi":"10.1126/sciadv.adw1968","DOIUrl":null,"url":null,"abstract":"<div >With sepsis remaining a leading cause of mortality, early identification of patients with sepsis and those at high risk of death is a challenge of high socioeconomic importance. Given the potential of hyperspectral imaging (HSI) to monitor microcirculatory alterations, we propose a deep learning approach to automated sepsis diagnosis and mortality prediction using a single HSI cube acquired within seconds. In a prospective observational study, we collected HSI data from the palms and fingers of more than 480 intensive care unit patients. Neural networks applied to HSI measurements predicted sepsis and mortality with areas under the receiver operating characteristic curve (AUROCs) of 0.80 and 0.72, respectively. Performance improved substantially with additional clinical data, reaching AUROCs of 0.94 for sepsis and 0.83 for mortality. We conclude that deep learning–based HSI analysis enables rapid and noninvasive prediction of sepsis and mortality, with a potential clinical value for enhancing diagnosis and treatment.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 29","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adw1968","citationCount":"0","resultStr":"{\"title\":\"AI-powered skin spectral imaging enables instant sepsis diagnosis and outcome prediction in critically ill patients\",\"authors\":\"Silvia Seidlitz,&nbsp;Katharina Hölzl,&nbsp;Ayca von Garrel,&nbsp;Jan Sellner,&nbsp;Stephan Katzenschlager,&nbsp;Tobias Hölle,&nbsp;Dania Fischer,&nbsp;Maik von der Forst,&nbsp;Felix C. F. Schmitt,&nbsp;Alexander Studier-Fischer,&nbsp;Markus A. Weigand,&nbsp;Lena Maier-Hein,&nbsp;Maximilian Dietrich\",\"doi\":\"10.1126/sciadv.adw1968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >With sepsis remaining a leading cause of mortality, early identification of patients with sepsis and those at high risk of death is a challenge of high socioeconomic importance. Given the potential of hyperspectral imaging (HSI) to monitor microcirculatory alterations, we propose a deep learning approach to automated sepsis diagnosis and mortality prediction using a single HSI cube acquired within seconds. In a prospective observational study, we collected HSI data from the palms and fingers of more than 480 intensive care unit patients. Neural networks applied to HSI measurements predicted sepsis and mortality with areas under the receiver operating characteristic curve (AUROCs) of 0.80 and 0.72, respectively. Performance improved substantially with additional clinical data, reaching AUROCs of 0.94 for sepsis and 0.83 for mortality. We conclude that deep learning–based HSI analysis enables rapid and noninvasive prediction of sepsis and mortality, with a potential clinical value for enhancing diagnosis and treatment.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 29\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adw1968\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adw1968\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adw1968","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

由于脓毒症仍然是导致死亡的主要原因,早期识别脓毒症患者和高危死亡患者是一项具有高度社会经济重要性的挑战。鉴于高光谱成像(HSI)在监测微循环变化方面的潜力,我们提出了一种深度学习方法,利用在几秒钟内获得的单个HSI立方体来自动诊断败血症和预测死亡率。在一项前瞻性观察研究中,我们收集了480多名重症监护病房患者手掌和手指的HSI数据。应用于HSI测量的神经网络预测败血症和死亡率,受试者工作特征曲线下面积(auroc)分别为0.80和0.72。随着额外的临床数据,性能得到了显著提高,脓毒症的auroc达到0.94,死亡率达到0.83。我们得出结论,基于深度学习的HSI分析能够快速、无创地预测败血症和死亡率,具有增强诊断和治疗的潜在临床价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

AI-powered skin spectral imaging enables instant sepsis diagnosis and outcome prediction in critically ill patients

AI-powered skin spectral imaging enables instant sepsis diagnosis and outcome prediction in critically ill patients
With sepsis remaining a leading cause of mortality, early identification of patients with sepsis and those at high risk of death is a challenge of high socioeconomic importance. Given the potential of hyperspectral imaging (HSI) to monitor microcirculatory alterations, we propose a deep learning approach to automated sepsis diagnosis and mortality prediction using a single HSI cube acquired within seconds. In a prospective observational study, we collected HSI data from the palms and fingers of more than 480 intensive care unit patients. Neural networks applied to HSI measurements predicted sepsis and mortality with areas under the receiver operating characteristic curve (AUROCs) of 0.80 and 0.72, respectively. Performance improved substantially with additional clinical data, reaching AUROCs of 0.94 for sepsis and 0.83 for mortality. We conclude that deep learning–based HSI analysis enables rapid and noninvasive prediction of sepsis and mortality, with a potential clinical value for enhancing diagnosis and treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信