等离子体纳米隙中单原子动力学的光学控制

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Paul Kerner, Rakesh Arul, Damien Thompson, Jeremy J. Baumberg, Bart de Nijs
{"title":"等离子体纳米隙中单原子动力学的光学控制","authors":"Paul Kerner,&nbsp;Rakesh Arul,&nbsp;Damien Thompson,&nbsp;Jeremy J. Baumberg,&nbsp;Bart de Nijs","doi":"10.1126/sciadv.adx3216","DOIUrl":null,"url":null,"abstract":"<div >Observing and controlling dynamics of single atoms in ambient conditions is challenging when using conventional atomic-scale techniques due to their invasive character. Here, such control is achieved optically, by confining pulses of visible light within extreme plasmonic nanogaps, where they rapidly create (“write”) an adatom on one facet surface. Such adatoms are shown to be storable in ambient conditions for at least a week in the dark and are observed (“read”) using low-intensity surface-enhanced Raman spectroscopy (SERS). Writing at higher optical intensities stabilizes the atomic protrusion through light-induced local restructuring, which imposes a higher energy barrier for its return into the metal surface. Fluctuations in these “picocavity” SERS spectra show that while adatom movement is significantly slower under low light intensities, ambient thermal energy still enables them to explore the surrounding energetic landscape. Optical control over single metal atom dynamics opens promising avenues for next-generation microelectronics, atomic-scale imaging, and catalysis.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 29","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adx3216","citationCount":"0","resultStr":"{\"title\":\"Optical control of single-atom dynamics in plasmonic nanogaps\",\"authors\":\"Paul Kerner,&nbsp;Rakesh Arul,&nbsp;Damien Thompson,&nbsp;Jeremy J. Baumberg,&nbsp;Bart de Nijs\",\"doi\":\"10.1126/sciadv.adx3216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Observing and controlling dynamics of single atoms in ambient conditions is challenging when using conventional atomic-scale techniques due to their invasive character. Here, such control is achieved optically, by confining pulses of visible light within extreme plasmonic nanogaps, where they rapidly create (“write”) an adatom on one facet surface. Such adatoms are shown to be storable in ambient conditions for at least a week in the dark and are observed (“read”) using low-intensity surface-enhanced Raman spectroscopy (SERS). Writing at higher optical intensities stabilizes the atomic protrusion through light-induced local restructuring, which imposes a higher energy barrier for its return into the metal surface. Fluctuations in these “picocavity” SERS spectra show that while adatom movement is significantly slower under low light intensities, ambient thermal energy still enables them to explore the surrounding energetic landscape. Optical control over single metal atom dynamics opens promising avenues for next-generation microelectronics, atomic-scale imaging, and catalysis.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 29\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adx3216\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adx3216\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adx3216","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

由于传统的原子尺度技术具有侵入性,因此在环境条件下观察和控制单个原子的动力学是具有挑战性的。在这里,这种控制是通过光学实现的,通过将可见光脉冲限制在极端的等离子体纳米间隙内,在那里它们快速地在一个面表面上创建(“写入”)一个原子。这种adatoms被证明可以在环境条件下在黑暗中储存至少一周,并使用低强度表面增强拉曼光谱(SERS)观察(“读取”)。在较高的光强下写入,通过光诱导的局部重组,原子突出稳定,这为其返回金属表面施加了更高的能量屏障。这些“皮腔”SERS光谱的波动表明,虽然在低光强度下吸附原子的运动明显变慢,但环境热能仍然使它们能够探索周围的能量景观。单金属原子动力学的光学控制为下一代微电子、原子尺度成像和催化开辟了有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optical control of single-atom dynamics in plasmonic nanogaps

Optical control of single-atom dynamics in plasmonic nanogaps
Observing and controlling dynamics of single atoms in ambient conditions is challenging when using conventional atomic-scale techniques due to their invasive character. Here, such control is achieved optically, by confining pulses of visible light within extreme plasmonic nanogaps, where they rapidly create (“write”) an adatom on one facet surface. Such adatoms are shown to be storable in ambient conditions for at least a week in the dark and are observed (“read”) using low-intensity surface-enhanced Raman spectroscopy (SERS). Writing at higher optical intensities stabilizes the atomic protrusion through light-induced local restructuring, which imposes a higher energy barrier for its return into the metal surface. Fluctuations in these “picocavity” SERS spectra show that while adatom movement is significantly slower under low light intensities, ambient thermal energy still enables them to explore the surrounding energetic landscape. Optical control over single metal atom dynamics opens promising avenues for next-generation microelectronics, atomic-scale imaging, and catalysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信