Joonmyoung Kim , Seonwoo Lee , Taekseon Ryu , Jonghyun Na , Taehyun Yun , Jeongho Lee , Hansuk Kim , Man Jae Kwon , Ho Young Jo , Yongsung Joo
{"title":"采用两步采样策略提高污染热点预测精度并识别热点边界","authors":"Joonmyoung Kim , Seonwoo Lee , Taekseon Ryu , Jonghyun Na , Taehyun Yun , Jeongho Lee , Hansuk Kim , Man Jae Kwon , Ho Young Jo , Yongsung Joo","doi":"10.1016/j.spasta.2025.100918","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient soil remediation, both economically and environmentally, depends on accurate mapping of contaminant concentrations and boundaries of hotspots (areas with concentrations exceeding a critical threshold) through an effective allocation of limited soil sampling sites. This paper introduces a novel two-step sampling location selection method, referred to as the weighted stepwise spatial sampling (WSSS) method. The WSSS method is specifically designed to provide accurate estimates of contaminant concentrations within hotspots and their boundaries. In the first step, dispersed sampling locations are selected for broad exploration, while in the second step, guided by the digital soil mapping results based on the first-step sampling data, sampling locations are selected to focus on identifying potential hotspots. A simulation study using total petroleum hydrocarbon soil data from South Korea demonstrates the superior accuracy and stability of the WSSS in identifying hotspot boundaries and predicting contaminant concentrations within hotspots, compared to other sampling location selection methods. This performance is achieved through an objective function specifically designed to ensure that the selection of sampling locations in the second step is robust to potential inaccuracies or uncertainties in the initial predictions.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"69 ","pages":"Article 100918"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A two-step sampling strategy to improve the prediction accuracy of contamination hotspots and identify hotspot boundaries\",\"authors\":\"Joonmyoung Kim , Seonwoo Lee , Taekseon Ryu , Jonghyun Na , Taehyun Yun , Jeongho Lee , Hansuk Kim , Man Jae Kwon , Ho Young Jo , Yongsung Joo\",\"doi\":\"10.1016/j.spasta.2025.100918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Efficient soil remediation, both economically and environmentally, depends on accurate mapping of contaminant concentrations and boundaries of hotspots (areas with concentrations exceeding a critical threshold) through an effective allocation of limited soil sampling sites. This paper introduces a novel two-step sampling location selection method, referred to as the weighted stepwise spatial sampling (WSSS) method. The WSSS method is specifically designed to provide accurate estimates of contaminant concentrations within hotspots and their boundaries. In the first step, dispersed sampling locations are selected for broad exploration, while in the second step, guided by the digital soil mapping results based on the first-step sampling data, sampling locations are selected to focus on identifying potential hotspots. A simulation study using total petroleum hydrocarbon soil data from South Korea demonstrates the superior accuracy and stability of the WSSS in identifying hotspot boundaries and predicting contaminant concentrations within hotspots, compared to other sampling location selection methods. This performance is achieved through an objective function specifically designed to ensure that the selection of sampling locations in the second step is robust to potential inaccuracies or uncertainties in the initial predictions.</div></div>\",\"PeriodicalId\":48771,\"journal\":{\"name\":\"Spatial Statistics\",\"volume\":\"69 \",\"pages\":\"Article 100918\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211675325000405\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675325000405","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
A two-step sampling strategy to improve the prediction accuracy of contamination hotspots and identify hotspot boundaries
Efficient soil remediation, both economically and environmentally, depends on accurate mapping of contaminant concentrations and boundaries of hotspots (areas with concentrations exceeding a critical threshold) through an effective allocation of limited soil sampling sites. This paper introduces a novel two-step sampling location selection method, referred to as the weighted stepwise spatial sampling (WSSS) method. The WSSS method is specifically designed to provide accurate estimates of contaminant concentrations within hotspots and their boundaries. In the first step, dispersed sampling locations are selected for broad exploration, while in the second step, guided by the digital soil mapping results based on the first-step sampling data, sampling locations are selected to focus on identifying potential hotspots. A simulation study using total petroleum hydrocarbon soil data from South Korea demonstrates the superior accuracy and stability of the WSSS in identifying hotspot boundaries and predicting contaminant concentrations within hotspots, compared to other sampling location selection methods. This performance is achieved through an objective function specifically designed to ensure that the selection of sampling locations in the second step is robust to potential inaccuracies or uncertainties in the initial predictions.
期刊介绍:
Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.
Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.