{"title":"风险价值预测的混合频率分位数回归森林","authors":"Vincenzo Candila , Lea Petrella , Mila Andreani","doi":"10.1016/j.eneco.2025.108706","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce Mixed-Frequency Quantile Regression Forests, a novel approach for non-parametrically computing conditional quantiles with mixed-frequency data to forecast the Value-at-Risk (VaR). By integrating the Mixed-Data Sampling (MIDAS) approach into Quantile Regression Forests (QRF), the proposed MIDAS-QRF specification incorporates information from both high and low frequencies, which would otherwise be unusable for VaR estimation in the context of random forests. Furthermore, leveraging the QRF approach allows us to capture non-linear relationships while accommodating skewed and fat-tailed distributions. We also propose a dynamic extension, MIDAS-DQRF, which introduces lagged VaR predictions as additional covariates. We extensively apply the MIDAS-QRF and MIDAS-DQRF specifications to forecast the VaR of energy futures, specifically WTI, Brent, and Heating Oil indices. By evaluating the proposed models through backtesting procedures, we provide empirical evidence of the validity of MIDAS-QRF and MIDAS-DQRF. Our findings indicate that these models generate statistically sound forecasts and generally outperform popular alternatives in terms of VaR forecast accuracy.</div></div>","PeriodicalId":11665,"journal":{"name":"Energy Economics","volume":"149 ","pages":"Article 108706"},"PeriodicalIF":13.6000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed-frequency Quantile Regression Forests for Value-at-Risk forecasting\",\"authors\":\"Vincenzo Candila , Lea Petrella , Mila Andreani\",\"doi\":\"10.1016/j.eneco.2025.108706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we introduce Mixed-Frequency Quantile Regression Forests, a novel approach for non-parametrically computing conditional quantiles with mixed-frequency data to forecast the Value-at-Risk (VaR). By integrating the Mixed-Data Sampling (MIDAS) approach into Quantile Regression Forests (QRF), the proposed MIDAS-QRF specification incorporates information from both high and low frequencies, which would otherwise be unusable for VaR estimation in the context of random forests. Furthermore, leveraging the QRF approach allows us to capture non-linear relationships while accommodating skewed and fat-tailed distributions. We also propose a dynamic extension, MIDAS-DQRF, which introduces lagged VaR predictions as additional covariates. We extensively apply the MIDAS-QRF and MIDAS-DQRF specifications to forecast the VaR of energy futures, specifically WTI, Brent, and Heating Oil indices. By evaluating the proposed models through backtesting procedures, we provide empirical evidence of the validity of MIDAS-QRF and MIDAS-DQRF. Our findings indicate that these models generate statistically sound forecasts and generally outperform popular alternatives in terms of VaR forecast accuracy.</div></div>\",\"PeriodicalId\":11665,\"journal\":{\"name\":\"Energy Economics\",\"volume\":\"149 \",\"pages\":\"Article 108706\"},\"PeriodicalIF\":13.6000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S014098832500533X\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014098832500533X","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Mixed-frequency Quantile Regression Forests for Value-at-Risk forecasting
In this paper, we introduce Mixed-Frequency Quantile Regression Forests, a novel approach for non-parametrically computing conditional quantiles with mixed-frequency data to forecast the Value-at-Risk (VaR). By integrating the Mixed-Data Sampling (MIDAS) approach into Quantile Regression Forests (QRF), the proposed MIDAS-QRF specification incorporates information from both high and low frequencies, which would otherwise be unusable for VaR estimation in the context of random forests. Furthermore, leveraging the QRF approach allows us to capture non-linear relationships while accommodating skewed and fat-tailed distributions. We also propose a dynamic extension, MIDAS-DQRF, which introduces lagged VaR predictions as additional covariates. We extensively apply the MIDAS-QRF and MIDAS-DQRF specifications to forecast the VaR of energy futures, specifically WTI, Brent, and Heating Oil indices. By evaluating the proposed models through backtesting procedures, we provide empirical evidence of the validity of MIDAS-QRF and MIDAS-DQRF. Our findings indicate that these models generate statistically sound forecasts and generally outperform popular alternatives in terms of VaR forecast accuracy.
期刊介绍:
Energy Economics is a field journal that focuses on energy economics and energy finance. It covers various themes including the exploitation, conversion, and use of energy, markets for energy commodities and derivatives, regulation and taxation, forecasting, environment and climate, international trade, development, and monetary policy. The journal welcomes contributions that utilize diverse methods such as experiments, surveys, econometrics, decomposition, simulation models, equilibrium models, optimization models, and analytical models. It publishes a combination of papers employing different methods to explore a wide range of topics. The journal's replication policy encourages the submission of replication studies, wherein researchers reproduce and extend the key results of original studies while explaining any differences. Energy Economics is indexed and abstracted in several databases including Environmental Abstracts, Fuel and Energy Abstracts, Social Sciences Citation Index, GEOBASE, Social & Behavioral Sciences, Journal of Economic Literature, INSPEC, and more.