Emilio Cano Renteria , Jacob A. Schwartz , Jesse Jenkins
{"title":"评估未来脱碳电网的先进核裂变技术","authors":"Emilio Cano Renteria , Jacob A. Schwartz , Jesse Jenkins","doi":"10.1016/j.apenergy.2025.126395","DOIUrl":null,"url":null,"abstract":"<div><div>Advanced nuclear fission, which encompasses various innovative nuclear reactor designs, could contribute to the decarbonization of the United States electricity sector. However, little is known about how cost-competitive these reactors would be compared to other technologies, or about which aspects of their designs offer the most value to a decarbonized power grid. We employ an electricity system optimization model and a case study of a decarbonized U.S. Eastern Interconnection circa 2050 to generate initial indicators of future economic value for advanced reactors and the sensitivity of future value to various design parameters, the availability of competing technologies, and the underlying policy environment. These results can inform long-term cost targets and guide near-term innovation priorities, investments, and reactor design decisions. We find that advanced reactors should cost $5.7–$7.3/W to gain an initial market share (assuming 30 year asset life and 3.5 %–6.5 % real weighted average cost of capital), while those that include thermal storage in their designs can cost up to $6.0/W–$7.7/W (not including cost of storage). Since the marginal value of advanced fission reactors declines as market penetration increases, break-even costs fall <span><math><mo>∼</mo></math></span>32 % at 100 GW of cumulative capacity and <span><math><mo>∼</mo></math></span>51 % at 300 GW. Additionally, policies that provide investment tax credits for nuclear energy create the most favorable environment for advanced nuclear fission. These findings can inform near-term resource allocation decisions by stakeholders, innovators and investors working in the energy technology sector.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"398 ","pages":"Article 126395"},"PeriodicalIF":10.1000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating advanced nuclear fission technologies for future decarbonized power grids\",\"authors\":\"Emilio Cano Renteria , Jacob A. Schwartz , Jesse Jenkins\",\"doi\":\"10.1016/j.apenergy.2025.126395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Advanced nuclear fission, which encompasses various innovative nuclear reactor designs, could contribute to the decarbonization of the United States electricity sector. However, little is known about how cost-competitive these reactors would be compared to other technologies, or about which aspects of their designs offer the most value to a decarbonized power grid. We employ an electricity system optimization model and a case study of a decarbonized U.S. Eastern Interconnection circa 2050 to generate initial indicators of future economic value for advanced reactors and the sensitivity of future value to various design parameters, the availability of competing technologies, and the underlying policy environment. These results can inform long-term cost targets and guide near-term innovation priorities, investments, and reactor design decisions. We find that advanced reactors should cost $5.7–$7.3/W to gain an initial market share (assuming 30 year asset life and 3.5 %–6.5 % real weighted average cost of capital), while those that include thermal storage in their designs can cost up to $6.0/W–$7.7/W (not including cost of storage). Since the marginal value of advanced fission reactors declines as market penetration increases, break-even costs fall <span><math><mo>∼</mo></math></span>32 % at 100 GW of cumulative capacity and <span><math><mo>∼</mo></math></span>51 % at 300 GW. Additionally, policies that provide investment tax credits for nuclear energy create the most favorable environment for advanced nuclear fission. These findings can inform near-term resource allocation decisions by stakeholders, innovators and investors working in the energy technology sector.</div></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":\"398 \",\"pages\":\"Article 126395\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306261925011250\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925011250","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Evaluating advanced nuclear fission technologies for future decarbonized power grids
Advanced nuclear fission, which encompasses various innovative nuclear reactor designs, could contribute to the decarbonization of the United States electricity sector. However, little is known about how cost-competitive these reactors would be compared to other technologies, or about which aspects of their designs offer the most value to a decarbonized power grid. We employ an electricity system optimization model and a case study of a decarbonized U.S. Eastern Interconnection circa 2050 to generate initial indicators of future economic value for advanced reactors and the sensitivity of future value to various design parameters, the availability of competing technologies, and the underlying policy environment. These results can inform long-term cost targets and guide near-term innovation priorities, investments, and reactor design decisions. We find that advanced reactors should cost $5.7–$7.3/W to gain an initial market share (assuming 30 year asset life and 3.5 %–6.5 % real weighted average cost of capital), while those that include thermal storage in their designs can cost up to $6.0/W–$7.7/W (not including cost of storage). Since the marginal value of advanced fission reactors declines as market penetration increases, break-even costs fall 32 % at 100 GW of cumulative capacity and 51 % at 300 GW. Additionally, policies that provide investment tax credits for nuclear energy create the most favorable environment for advanced nuclear fission. These findings can inform near-term resource allocation decisions by stakeholders, innovators and investors working in the energy technology sector.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.