铝基复合材料的熔焊弧焊:挑战、机理与进展

IF 7.9 Q1 ENGINEERING, MULTIDISCIPLINARY
Sefrian Rizki Bintoro, Eko Surojo, Nurul Muhayat, Triyono
{"title":"铝基复合材料的熔焊弧焊:挑战、机理与进展","authors":"Sefrian Rizki Bintoro,&nbsp;Eko Surojo,&nbsp;Nurul Muhayat,&nbsp;Triyono","doi":"10.1016/j.rineng.2025.106257","DOIUrl":null,"url":null,"abstract":"<div><div>Aluminum Matrix Composites (AMCs) offer superior mechanical and tribological properties, making them attractive for advanced structural applications. However, challenges in joining techniques, especially fusion arc welding, hinder their broader industrial use. Fusion arc welding of AMCs, particularly using Tungsten Inert Gas (TIG), faces major challenges due to interfacial reactions, porosity, and reinforcement agglomeration. This review evaluates recent strategies to improve weld quality, emphasizing nano-composite filler metals, weld parameter optimization, and post-weld heat treatments. Composite fillers reinforced with TiB₂, TiC, graphene, and high-entropy alloys (HEAs) significantly enhance tensile strength and hardness through grain refinement, Orowan looping, and thermal mismatch strengthening. Among these, HEA-based fillers (10 wt%) demonstrate the best performance, achieving 410 MPa UTS and 22% strain. Post-weld aging and homogenization further improve microstructural uniformity and mechanical properties. Innovations such as artificial intelligence (AI)-based process optimization and hybrid welding are also discussed. This review provides a mechanistic synthesis of recent advancements and identifies promising pathways for overcoming critical welding challenges in AMCs, thus serving as a valuable reference for future research and industrial implementation.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"27 ","pages":"Article 106257"},"PeriodicalIF":7.9000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comprehensive Review on Fusion Arc Welding of Aluminum Matrix Composites: Challenges, Mechanisms, and Advancements\",\"authors\":\"Sefrian Rizki Bintoro,&nbsp;Eko Surojo,&nbsp;Nurul Muhayat,&nbsp;Triyono\",\"doi\":\"10.1016/j.rineng.2025.106257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Aluminum Matrix Composites (AMCs) offer superior mechanical and tribological properties, making them attractive for advanced structural applications. However, challenges in joining techniques, especially fusion arc welding, hinder their broader industrial use. Fusion arc welding of AMCs, particularly using Tungsten Inert Gas (TIG), faces major challenges due to interfacial reactions, porosity, and reinforcement agglomeration. This review evaluates recent strategies to improve weld quality, emphasizing nano-composite filler metals, weld parameter optimization, and post-weld heat treatments. Composite fillers reinforced with TiB₂, TiC, graphene, and high-entropy alloys (HEAs) significantly enhance tensile strength and hardness through grain refinement, Orowan looping, and thermal mismatch strengthening. Among these, HEA-based fillers (10 wt%) demonstrate the best performance, achieving 410 MPa UTS and 22% strain. Post-weld aging and homogenization further improve microstructural uniformity and mechanical properties. Innovations such as artificial intelligence (AI)-based process optimization and hybrid welding are also discussed. This review provides a mechanistic synthesis of recent advancements and identifies promising pathways for overcoming critical welding challenges in AMCs, thus serving as a valuable reference for future research and industrial implementation.</div></div>\",\"PeriodicalId\":36919,\"journal\":{\"name\":\"Results in Engineering\",\"volume\":\"27 \",\"pages\":\"Article 106257\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590123025023291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123025023291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

铝基复合材料(AMCs)具有优异的机械和摩擦学性能,使其在高级结构应用中具有吸引力。然而,连接技术的挑战,特别是熔弧焊,阻碍了其更广泛的工业应用。由于界面反应、孔隙率和强化团聚等问题,amc的熔焊,特别是使用钨惰性气体(TIG)的熔焊面临着重大挑战。本文综述了提高焊接质量的最新策略,重点介绍了纳米复合填充金属、焊接参数优化和焊后热处理。由tib2、TiC、石墨烯和高熵合金(HEAs)增强的复合填料通过晶粒细化、Orowan环和热失配强化显著提高抗拉强度和硬度。其中,hea基填料(10 wt%)表现出最好的性能,达到410 MPa的UTS和22%的应变。焊后时效和均质化进一步改善了组织均匀性和力学性能。还讨论了基于人工智能(AI)的工艺优化和混合焊接等创新。这篇综述提供了最近进展的机械综合,并确定了克服关键焊接挑战的有希望的途径,从而为未来的研究和工业实施提供了有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comprehensive Review on Fusion Arc Welding of Aluminum Matrix Composites: Challenges, Mechanisms, and Advancements
Aluminum Matrix Composites (AMCs) offer superior mechanical and tribological properties, making them attractive for advanced structural applications. However, challenges in joining techniques, especially fusion arc welding, hinder their broader industrial use. Fusion arc welding of AMCs, particularly using Tungsten Inert Gas (TIG), faces major challenges due to interfacial reactions, porosity, and reinforcement agglomeration. This review evaluates recent strategies to improve weld quality, emphasizing nano-composite filler metals, weld parameter optimization, and post-weld heat treatments. Composite fillers reinforced with TiB₂, TiC, graphene, and high-entropy alloys (HEAs) significantly enhance tensile strength and hardness through grain refinement, Orowan looping, and thermal mismatch strengthening. Among these, HEA-based fillers (10 wt%) demonstrate the best performance, achieving 410 MPa UTS and 22% strain. Post-weld aging and homogenization further improve microstructural uniformity and mechanical properties. Innovations such as artificial intelligence (AI)-based process optimization and hybrid welding are also discussed. This review provides a mechanistic synthesis of recent advancements and identifies promising pathways for overcoming critical welding challenges in AMCs, thus serving as a valuable reference for future research and industrial implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信