亚伯拉罕溶剂化参数模型在医疗器械可萃取物和可浸物分析中乙醇对血液模拟溶剂相对可萃取性的热力学研究

IF 3.2
Jianwei Li
{"title":"亚伯拉罕溶剂化参数模型在医疗器械可萃取物和可浸物分析中乙醇对血液模拟溶剂相对可萃取性的热力学研究","authors":"Jianwei Li","doi":"10.1016/j.jcoa.2025.100238","DOIUrl":null,"url":null,"abstract":"<div><div>A thermodynamic study of over-extraction of blood contacting medical devices by ethanol to ethanol/water binary cosolvent mixture (50/50, v/v), as a blood simulating solvent, in chemical analysis of medical devices is evaluated by Abraham’s solvation parameter model using five representative materials (low density polyethylene or LDPE, silicone, polyurethane or PU, polyoxymethylene or POM, and polyacrylate or PA). The Abraham’s model is initially used to calculate the material-solvent partition system coefficients by the corresponding partition system constants and representative extractables compounds between five materials and ethanol/water (and methanol/water) cosolvent mixtures at different volume fractions. The partition system constants are indirectly derived by a “thermodynamic circle conversion” method, based on material-water partition systems and solvent-water water partition systems. The material-solvent (mixture) partition coefficient, <span><math><msub><mi>P</mi><mrow><mi>M</mi><mo>/</mo><mi>S</mi><mi>o</mi><mi>l</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi></mrow></msub></math></span>=<span><math><mrow><msub><mi>C</mi><mi>M</mi></msub><mo>/</mo><msub><mi>C</mi><mrow><mi>S</mi><mi>o</mi><mi>l</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi></mrow></msub></mrow></math></span>, defined as the concentration in the material phase divided by the concentration in the solvent phase, is used as an indicator of the solvent extraction strength. <span><math><mrow><mi>log</mi><mo>(</mo><msub><mi>P</mi><mrow><mi>M</mi><mo>/</mo><mi>S</mi><mi>o</mi><mi>l</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi></mrow></msub><mo>)</mo></mrow></math></span> values are computed for all material-solvent pairs using the representative extractables compounds, mostly from Wayne State University experimental descriptor database (WSUEDD). The predictive <span><math><mrow><msub><mi>log</mi><mn>10</mn></msub><mrow><mo>(</mo><msub><mi>P</mi><mrow><mi>M</mi><mo>/</mo><mi>S</mi><mi>o</mi><mi>l</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> values between LDPE and silicone materials and ethanol/water (and methanol/water) cosolvent mixtures are compared with the available experimental values to assess the model’s predictive accuracy. Afterward, the predictive <span><math><mrow><msub><mi>log</mi><mn>10</mn></msub><mrow><mo>(</mo><msub><mi>P</mi><mrow><mi>M</mi><mo>/</mo><mi>S</mi><mi>o</mi><mi>l</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> values of ethanol to ethanol/water binary cosolvent mixture (50/50, v/v) are used to calculate relative extractability (<em>RE</em>), as an indicator of over-extraction. Several conclusions can be drawn from this study. First, the predicted partition coefficients are confirmed by available experimental values (LDPE and silicone). Second, the over-extraction of medical devices by ethanol to the blood simulating solvent is less important for more polar extractables, but pronounced for more nonpolar compounds, for example up to a thousand-fold at <span><math><mrow><msub><mi>log</mi><mn>10</mn></msub><mrow><mo>(</mo><msub><mi>P</mi><mrow><mi>o</mi><mo>/</mo><mi>w</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>=10. Third, this over-extraction is also affected by the phase volume ratio between material and solvent phases. Over-extraction is significantly minimized using small phase ratio (or large solvent volume). Finally, Abraham’s solvation parameter model is once again demonstrated as an invaluable and capable tool in solvent selection and extraction of medical devices.</div></div>","PeriodicalId":93576,"journal":{"name":"Journal of chromatography open","volume":"8 ","pages":"Article 100238"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A thermodynamic study of relative extractability of ethanol to blood simulating solvent in extractables and leachables analysis of medical devices by Abraham’s Solvation Parameter Model\",\"authors\":\"Jianwei Li\",\"doi\":\"10.1016/j.jcoa.2025.100238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A thermodynamic study of over-extraction of blood contacting medical devices by ethanol to ethanol/water binary cosolvent mixture (50/50, v/v), as a blood simulating solvent, in chemical analysis of medical devices is evaluated by Abraham’s solvation parameter model using five representative materials (low density polyethylene or LDPE, silicone, polyurethane or PU, polyoxymethylene or POM, and polyacrylate or PA). The Abraham’s model is initially used to calculate the material-solvent partition system coefficients by the corresponding partition system constants and representative extractables compounds between five materials and ethanol/water (and methanol/water) cosolvent mixtures at different volume fractions. The partition system constants are indirectly derived by a “thermodynamic circle conversion” method, based on material-water partition systems and solvent-water water partition systems. The material-solvent (mixture) partition coefficient, <span><math><msub><mi>P</mi><mrow><mi>M</mi><mo>/</mo><mi>S</mi><mi>o</mi><mi>l</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi></mrow></msub></math></span>=<span><math><mrow><msub><mi>C</mi><mi>M</mi></msub><mo>/</mo><msub><mi>C</mi><mrow><mi>S</mi><mi>o</mi><mi>l</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi></mrow></msub></mrow></math></span>, defined as the concentration in the material phase divided by the concentration in the solvent phase, is used as an indicator of the solvent extraction strength. <span><math><mrow><mi>log</mi><mo>(</mo><msub><mi>P</mi><mrow><mi>M</mi><mo>/</mo><mi>S</mi><mi>o</mi><mi>l</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi></mrow></msub><mo>)</mo></mrow></math></span> values are computed for all material-solvent pairs using the representative extractables compounds, mostly from Wayne State University experimental descriptor database (WSUEDD). The predictive <span><math><mrow><msub><mi>log</mi><mn>10</mn></msub><mrow><mo>(</mo><msub><mi>P</mi><mrow><mi>M</mi><mo>/</mo><mi>S</mi><mi>o</mi><mi>l</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> values between LDPE and silicone materials and ethanol/water (and methanol/water) cosolvent mixtures are compared with the available experimental values to assess the model’s predictive accuracy. Afterward, the predictive <span><math><mrow><msub><mi>log</mi><mn>10</mn></msub><mrow><mo>(</mo><msub><mi>P</mi><mrow><mi>M</mi><mo>/</mo><mi>S</mi><mi>o</mi><mi>l</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> values of ethanol to ethanol/water binary cosolvent mixture (50/50, v/v) are used to calculate relative extractability (<em>RE</em>), as an indicator of over-extraction. Several conclusions can be drawn from this study. First, the predicted partition coefficients are confirmed by available experimental values (LDPE and silicone). Second, the over-extraction of medical devices by ethanol to the blood simulating solvent is less important for more polar extractables, but pronounced for more nonpolar compounds, for example up to a thousand-fold at <span><math><mrow><msub><mi>log</mi><mn>10</mn></msub><mrow><mo>(</mo><msub><mi>P</mi><mrow><mi>o</mi><mo>/</mo><mi>w</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>=10. Third, this over-extraction is also affected by the phase volume ratio between material and solvent phases. Over-extraction is significantly minimized using small phase ratio (or large solvent volume). Finally, Abraham’s solvation parameter model is once again demonstrated as an invaluable and capable tool in solvent selection and extraction of medical devices.</div></div>\",\"PeriodicalId\":93576,\"journal\":{\"name\":\"Journal of chromatography open\",\"volume\":\"8 \",\"pages\":\"Article 100238\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of chromatography open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772391725000362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chromatography open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772391725000362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以低密度聚乙烯(LDPE)、有机硅、聚氨酯(PU)、聚甲醛(POM)、聚丙烯酸酯(PA)等5种代表性材料为研究对象,采用Abraham溶剂化参数模型,对乙醇与乙醇/水二元共溶剂混合物(50/50,v/v)作为血液模拟溶剂,在医疗器械化学分析中对接触医疗器械的血液进行过萃取的热力学研究。亚伯拉罕模型最初是通过五种材料与乙醇/水(和甲醇/水)共溶剂混合物在不同体积分数下对应的分配系统常数和具有代表性的可萃取化合物来计算材料-溶剂分配系统系数。在物质-水配分体系和溶剂-水配分体系的基础上,采用“热力学循环转换”方法间接推导配分体系常数。物料-溶剂(混合物)分配系数PM/Solvent=CM/CSolvent,定义为物料相浓度除以溶剂相浓度,作为溶剂萃取强度的指标。log(PM/溶剂)值是使用代表性的可提取化合物计算所有材料-溶剂对,主要来自韦恩州立大学实验描述符数据库(WSUEDD)。将LDPE和有机硅材料以及乙醇/水(和甲醇/水)共溶剂混合物之间的预测log10(PM/溶剂)值与可用的实验值进行比较,以评估模型的预测准确性。然后,使用乙醇与乙醇/水二元共溶剂混合物(50/50,v/v)的预测log10(PM/溶剂)值来计算相对可萃取性(RE),作为过度萃取的指标。从这项研究中可以得出几个结论。首先,用现有的实验值(LDPE和硅胶)验证了预测的分配系数。其次,用乙醇将医疗器械过度提取到血液模拟溶剂中,对于极性更高的可提取物不太重要,但对于更多的非极性化合物,例如在log10(Po/w)=10时高达一千倍。第三,这种过萃取还受到物料与溶剂相之间的相体积比的影响。使用小的相比(或大的溶剂体积)可以显著地减少过度萃取。最后,亚伯拉罕的溶剂化参数模型再次被证明是医疗器械溶剂选择和提取的宝贵和有能力的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A thermodynamic study of relative extractability of ethanol to blood simulating solvent in extractables and leachables analysis of medical devices by Abraham’s Solvation Parameter Model

A thermodynamic study of relative extractability of ethanol to blood simulating solvent in extractables and leachables analysis of medical devices by Abraham’s Solvation Parameter Model
A thermodynamic study of over-extraction of blood contacting medical devices by ethanol to ethanol/water binary cosolvent mixture (50/50, v/v), as a blood simulating solvent, in chemical analysis of medical devices is evaluated by Abraham’s solvation parameter model using five representative materials (low density polyethylene or LDPE, silicone, polyurethane or PU, polyoxymethylene or POM, and polyacrylate or PA). The Abraham’s model is initially used to calculate the material-solvent partition system coefficients by the corresponding partition system constants and representative extractables compounds between five materials and ethanol/water (and methanol/water) cosolvent mixtures at different volume fractions. The partition system constants are indirectly derived by a “thermodynamic circle conversion” method, based on material-water partition systems and solvent-water water partition systems. The material-solvent (mixture) partition coefficient, PM/Solvent=CM/CSolvent, defined as the concentration in the material phase divided by the concentration in the solvent phase, is used as an indicator of the solvent extraction strength. log(PM/Solvent) values are computed for all material-solvent pairs using the representative extractables compounds, mostly from Wayne State University experimental descriptor database (WSUEDD). The predictive log10(PM/Solvent) values between LDPE and silicone materials and ethanol/water (and methanol/water) cosolvent mixtures are compared with the available experimental values to assess the model’s predictive accuracy. Afterward, the predictive log10(PM/Solvent) values of ethanol to ethanol/water binary cosolvent mixture (50/50, v/v) are used to calculate relative extractability (RE), as an indicator of over-extraction. Several conclusions can be drawn from this study. First, the predicted partition coefficients are confirmed by available experimental values (LDPE and silicone). Second, the over-extraction of medical devices by ethanol to the blood simulating solvent is less important for more polar extractables, but pronounced for more nonpolar compounds, for example up to a thousand-fold at log10(Po/w)=10. Third, this over-extraction is also affected by the phase volume ratio between material and solvent phases. Over-extraction is significantly minimized using small phase ratio (or large solvent volume). Finally, Abraham’s solvation parameter model is once again demonstrated as an invaluable and capable tool in solvent selection and extraction of medical devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of chromatography open
Journal of chromatography open Analytical Chemistry
CiteScore
2.50
自引率
0.00%
发文量
0
审稿时长
50 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信