超声增强的紫芪载长循环固体脂质纳米颗粒对卵巢癌中IL-6/STAT3信号通路的抑制作用

IF 4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Wenjing Wang, Haibin Xi, Yi Ping
{"title":"超声增强的紫芪载长循环固体脂质纳米颗粒对卵巢癌中IL-6/STAT3信号通路的抑制作用","authors":"Wenjing Wang,&nbsp;Haibin Xi,&nbsp;Yi Ping","doi":"10.1016/j.procbio.2025.06.017","DOIUrl":null,"url":null,"abstract":"<div><div>The current investigation explores a novel combinational approach for ovarian cancer treatment by formulating Pterostilbene-loaded solid lipid nanoparticles (PT-SLNPs) and enhancing their therapeutic efficiency using ultrasound stimulation. The formulated PT-SLNPs displays favorable physicochemical properties, with a mean particle size of 133.46 ± 24.21 nm, a low polydispersity index (0.14 ± 0.02), and high entrapment efficiency (87.76 ± 0.5 %). The uniqueness of this work is attributed to the synergistic application of PT-SLNPs and ultrasound (US), which significantly enhanced the cytotoxic effect against human ovarian cancer cell A2780. Further, flowcytometry method confirmed a considerable increase in apoptosis in cells treated with PT-SLNPs + US combination. Mechanistically, exposure of cancer cells to PT-SLNPs + US downregulated the key tumor associated pro-survival and proliferative pathways by suppressing IL-6 expression and inhibiting STAT3 phosphorylation. These findings highlight the innovative potential of US assisted PT-SLNPs as a promising, less toxic alternative to conventional chemotherapy and radiotherapy in ovarian cancer treatment.</div></div>","PeriodicalId":20811,"journal":{"name":"Process Biochemistry","volume":"157 ","pages":"Pages 122-135"},"PeriodicalIF":4.0000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasound-enhanced delivery of pterostilbene-loaded long-circulating solid lipid nanoparticles for the inhibition of IL-6/STAT3 signaling pathway in ovarian cancer\",\"authors\":\"Wenjing Wang,&nbsp;Haibin Xi,&nbsp;Yi Ping\",\"doi\":\"10.1016/j.procbio.2025.06.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The current investigation explores a novel combinational approach for ovarian cancer treatment by formulating Pterostilbene-loaded solid lipid nanoparticles (PT-SLNPs) and enhancing their therapeutic efficiency using ultrasound stimulation. The formulated PT-SLNPs displays favorable physicochemical properties, with a mean particle size of 133.46 ± 24.21 nm, a low polydispersity index (0.14 ± 0.02), and high entrapment efficiency (87.76 ± 0.5 %). The uniqueness of this work is attributed to the synergistic application of PT-SLNPs and ultrasound (US), which significantly enhanced the cytotoxic effect against human ovarian cancer cell A2780. Further, flowcytometry method confirmed a considerable increase in apoptosis in cells treated with PT-SLNPs + US combination. Mechanistically, exposure of cancer cells to PT-SLNPs + US downregulated the key tumor associated pro-survival and proliferative pathways by suppressing IL-6 expression and inhibiting STAT3 phosphorylation. These findings highlight the innovative potential of US assisted PT-SLNPs as a promising, less toxic alternative to conventional chemotherapy and radiotherapy in ovarian cancer treatment.</div></div>\",\"PeriodicalId\":20811,\"journal\":{\"name\":\"Process Biochemistry\",\"volume\":\"157 \",\"pages\":\"Pages 122-135\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Process Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S135951132500193X\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135951132500193X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探索了一种新的卵巢癌联合治疗方法,即制备载紫芪固体脂质纳米颗粒(PT-SLNPs),并利用超声刺激提高其治疗效率。所制得的PT-SLNPs具有良好的物理化学性能,平均粒径为133.46 ± 24.21 nm,低多分散性指数(0.14 ± 0.02),高捕集效率(87.76 ± 0.5 %)。这项工作的独特之处在于PT-SLNPs与超声(US)的协同应用,显著增强了对人卵巢癌细胞A2780的细胞毒作用。此外,流式细胞术方法证实PT-SLNPs + US联合处理的细胞凋亡显著增加。从机制上讲,癌细胞暴露于PT-SLNPs + US通过抑制IL-6表达和抑制STAT3磷酸化,下调了肿瘤相关的关键促生存和增殖途径。这些发现突出了US辅助PT-SLNPs作为一种有希望的、毒性更低的卵巢癌化疗和放疗替代方案的创新潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrasound-enhanced delivery of pterostilbene-loaded long-circulating solid lipid nanoparticles for the inhibition of IL-6/STAT3 signaling pathway in ovarian cancer
The current investigation explores a novel combinational approach for ovarian cancer treatment by formulating Pterostilbene-loaded solid lipid nanoparticles (PT-SLNPs) and enhancing their therapeutic efficiency using ultrasound stimulation. The formulated PT-SLNPs displays favorable physicochemical properties, with a mean particle size of 133.46 ± 24.21 nm, a low polydispersity index (0.14 ± 0.02), and high entrapment efficiency (87.76 ± 0.5 %). The uniqueness of this work is attributed to the synergistic application of PT-SLNPs and ultrasound (US), which significantly enhanced the cytotoxic effect against human ovarian cancer cell A2780. Further, flowcytometry method confirmed a considerable increase in apoptosis in cells treated with PT-SLNPs + US combination. Mechanistically, exposure of cancer cells to PT-SLNPs + US downregulated the key tumor associated pro-survival and proliferative pathways by suppressing IL-6 expression and inhibiting STAT3 phosphorylation. These findings highlight the innovative potential of US assisted PT-SLNPs as a promising, less toxic alternative to conventional chemotherapy and radiotherapy in ovarian cancer treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Process Biochemistry
Process Biochemistry 生物-工程:化工
CiteScore
8.30
自引率
4.50%
发文量
374
审稿时长
53 days
期刊介绍: Process Biochemistry is an application-orientated research journal devoted to reporting advances with originality and novelty, in the science and technology of the processes involving bioactive molecules and living organisms. These processes concern the production of useful metabolites or materials, or the removal of toxic compounds using tools and methods of current biology and engineering. Its main areas of interest include novel bioprocesses and enabling technologies (such as nanobiotechnology, tissue engineering, directed evolution, metabolic engineering, systems biology, and synthetic biology) applicable in food (nutraceutical), healthcare (medical, pharmaceutical, cosmetic), energy (biofuels), environmental, and biorefinery industries and their underlying biological and engineering principles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信