Indi Geurs , Elly De Vlieghere , Charlotte Grootaert , Daylan A. Tzompa-Sosa , Charlot Philips , Fabrice Bray , Christian Rolando , Stefaan De Smet , Koen Dewettinck , Sandra Van Vlierberghe , John Van Camp
{"title":"牛肉的细胞外基质:对培养肉的三维支架的表征","authors":"Indi Geurs , Elly De Vlieghere , Charlotte Grootaert , Daylan A. Tzompa-Sosa , Charlot Philips , Fabrice Bray , Christian Rolando , Stefaan De Smet , Koen Dewettinck , Sandra Van Vlierberghe , John Van Camp","doi":"10.1016/j.foostr.2025.100447","DOIUrl":null,"url":null,"abstract":"<div><div>Scaffold development for muscle cell growth in cultured meat production requires understanding the mechanical properties of the extracellular matrix (ECM) in bovine muscle tissue. However, previous studies have focused on non-bovine samples and have altered the native ECM structure by processing it into hydrogels. This study characterizes the native ECM of bovine muscle tissues, providing reference data for designing ECM alternatives while preserving its structural and mechanical features. Protocols were optimized for thin samples (∼ 1.5 mm), corresponding to the cultured meat products currently under development. ECM was isolated from fresh bovine sirloin and tenderloin using 0.5 % SDS for decellularization. An extensive sample quality validation was performed, including cryo-SEM to visualize internal structures, Picogreen assays to quantify residual dsDNA and confirm effective cell removal, and proteomic and glycosaminoglycan analyses to verify retention of essential ECM components. Subsequent mechanical analyses included amplitude sweeps (G’, G’’, linear visco-elastic region, cross-over point) and texture analyses (total extension, maximal load). Results confirmed efficient decellularization, preserving the ECM’s structural and compositional integrity. The storage modulus (G’) was 15.2 kPa for sirloin and 12.3 kPa for tenderloin, decreasing significantly to 0.3 kPa (p < 0.01) and 1.0 kPa (p < 0.001) for their decellularized counterparts. Texture analyses revealed no significant differences, suggesting ECM primarily determines these properties. Maximal load ranged from 1.4 N to 3.1 N, while total extension varied between 9.2 mm and 11.6 mm. These findings provide reference data for scaffolds replicating natural ECM properties and establish target mechanical properties for cultured muscle fiber constructs.</div></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"45 ","pages":"Article 100447"},"PeriodicalIF":5.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The extracellular matrix of beef: A characterization towards a 3D scaffold for cultured meat\",\"authors\":\"Indi Geurs , Elly De Vlieghere , Charlotte Grootaert , Daylan A. Tzompa-Sosa , Charlot Philips , Fabrice Bray , Christian Rolando , Stefaan De Smet , Koen Dewettinck , Sandra Van Vlierberghe , John Van Camp\",\"doi\":\"10.1016/j.foostr.2025.100447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Scaffold development for muscle cell growth in cultured meat production requires understanding the mechanical properties of the extracellular matrix (ECM) in bovine muscle tissue. However, previous studies have focused on non-bovine samples and have altered the native ECM structure by processing it into hydrogels. This study characterizes the native ECM of bovine muscle tissues, providing reference data for designing ECM alternatives while preserving its structural and mechanical features. Protocols were optimized for thin samples (∼ 1.5 mm), corresponding to the cultured meat products currently under development. ECM was isolated from fresh bovine sirloin and tenderloin using 0.5 % SDS for decellularization. An extensive sample quality validation was performed, including cryo-SEM to visualize internal structures, Picogreen assays to quantify residual dsDNA and confirm effective cell removal, and proteomic and glycosaminoglycan analyses to verify retention of essential ECM components. Subsequent mechanical analyses included amplitude sweeps (G’, G’’, linear visco-elastic region, cross-over point) and texture analyses (total extension, maximal load). Results confirmed efficient decellularization, preserving the ECM’s structural and compositional integrity. The storage modulus (G’) was 15.2 kPa for sirloin and 12.3 kPa for tenderloin, decreasing significantly to 0.3 kPa (p < 0.01) and 1.0 kPa (p < 0.001) for their decellularized counterparts. Texture analyses revealed no significant differences, suggesting ECM primarily determines these properties. Maximal load ranged from 1.4 N to 3.1 N, while total extension varied between 9.2 mm and 11.6 mm. These findings provide reference data for scaffolds replicating natural ECM properties and establish target mechanical properties for cultured muscle fiber constructs.</div></div>\",\"PeriodicalId\":48640,\"journal\":{\"name\":\"Food Structure-Netherlands\",\"volume\":\"45 \",\"pages\":\"Article 100447\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Structure-Netherlands\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213329125000425\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Structure-Netherlands","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213329125000425","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
The extracellular matrix of beef: A characterization towards a 3D scaffold for cultured meat
Scaffold development for muscle cell growth in cultured meat production requires understanding the mechanical properties of the extracellular matrix (ECM) in bovine muscle tissue. However, previous studies have focused on non-bovine samples and have altered the native ECM structure by processing it into hydrogels. This study characterizes the native ECM of bovine muscle tissues, providing reference data for designing ECM alternatives while preserving its structural and mechanical features. Protocols were optimized for thin samples (∼ 1.5 mm), corresponding to the cultured meat products currently under development. ECM was isolated from fresh bovine sirloin and tenderloin using 0.5 % SDS for decellularization. An extensive sample quality validation was performed, including cryo-SEM to visualize internal structures, Picogreen assays to quantify residual dsDNA and confirm effective cell removal, and proteomic and glycosaminoglycan analyses to verify retention of essential ECM components. Subsequent mechanical analyses included amplitude sweeps (G’, G’’, linear visco-elastic region, cross-over point) and texture analyses (total extension, maximal load). Results confirmed efficient decellularization, preserving the ECM’s structural and compositional integrity. The storage modulus (G’) was 15.2 kPa for sirloin and 12.3 kPa for tenderloin, decreasing significantly to 0.3 kPa (p < 0.01) and 1.0 kPa (p < 0.001) for their decellularized counterparts. Texture analyses revealed no significant differences, suggesting ECM primarily determines these properties. Maximal load ranged from 1.4 N to 3.1 N, while total extension varied between 9.2 mm and 11.6 mm. These findings provide reference data for scaffolds replicating natural ECM properties and establish target mechanical properties for cultured muscle fiber constructs.
期刊介绍:
Food Structure is the premier international forum devoted to the publication of high-quality original research on food structure. The focus of this journal is on food structure in the context of its relationship with molecular composition, processing and macroscopic properties (e.g., shelf stability, sensory properties, etc.). Manuscripts that only report qualitative findings and micrographs and that lack sound hypothesis-driven, quantitative structure-function research are not accepted. Significance of the research findings for the food science community and/or industry must also be highlighted.