Chi-Kwong Li , Ming-Cheng Tsai , Ya-Shu Wang , Ngai-Ching Wong
{"title":"Lp(μ)空间中平行/TEA向量的线性保持器","authors":"Chi-Kwong Li , Ming-Cheng Tsai , Ya-Shu Wang , Ngai-Ching Wong","doi":"10.1016/j.jmaa.2025.129889","DOIUrl":null,"url":null,"abstract":"<div><div>In normed vector spaces, two vectors <span><math><mi>x</mi><mo>,</mo><mi>y</mi></math></span> are <em>parallel</em> (resp., <em>triangle equality attaining</em> (TEA)) if there is a scalar <em>ξ</em> with <span><math><mo>|</mo><mi>ξ</mi><mo>|</mo><mo>=</mo><mn>1</mn></math></span> (resp., <span><math><mi>ξ</mi><mo>=</mo><mn>1</mn></math></span>) such that <span><math><mo>‖</mo><mi>x</mi><mo>+</mo><mi>ξ</mi><mi>y</mi><mo>‖</mo><mo>=</mo><mo>‖</mo><mi>x</mi><mo>‖</mo><mo>+</mo><mo>‖</mo><mi>y</mi><mo>‖</mo></math></span>. This paper characterizes linear maps preserving these pairs in <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>μ</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><mi>μ</mi><mo>)</mo></math></span> spaces, where non-strict convexity enables rich geometric structures absent in <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> spaces, with <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>∪</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> (for which all linear maps trivially preserve such pairs). We first resolve finite-dimensional cases: <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-norm TEA pair preservers are matrices with at most one nonzero entry per row. For <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>, TEA pair preservers are scalar multiples of isometries, except in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. These results extend to infinite dimensional spaces <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>Λ</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>Λ</mi><mo>)</mo></math></span>, and <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><mi>Λ</mi><mo>)</mo></math></span>, where TEA pair preservers are generalized permutation operators (for <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>) or scalar multiples of isometries (for <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>). In all cases, parallel pair preservers are either TEA pair preservers or rank one maps. Crucially, we generalize to measure-theoretic settings. For <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>μ</mi><mo>)</mo></math></span>, TEA pair preservers are automatically bounded and preserves disjointness; in many interesting cases, they are weighted compositions. Parallel pair preservers combine these with rank-one maps. For <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><mi>μ</mi><mo>)</mo></math></span>, bijective preservers are scalar isometries, establishing a dichotomy: <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> preservers reflect sparsity, while <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> preservers align with isometric symmetries. These results unify finite-dimensional, sequence-space, and general <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> settings, advancing the classification of structure-preserving operators in Banach spaces.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 2","pages":"Article 129889"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear preservers of parallel/TEA vectors in Lp(μ) spaces\",\"authors\":\"Chi-Kwong Li , Ming-Cheng Tsai , Ya-Shu Wang , Ngai-Ching Wong\",\"doi\":\"10.1016/j.jmaa.2025.129889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In normed vector spaces, two vectors <span><math><mi>x</mi><mo>,</mo><mi>y</mi></math></span> are <em>parallel</em> (resp., <em>triangle equality attaining</em> (TEA)) if there is a scalar <em>ξ</em> with <span><math><mo>|</mo><mi>ξ</mi><mo>|</mo><mo>=</mo><mn>1</mn></math></span> (resp., <span><math><mi>ξ</mi><mo>=</mo><mn>1</mn></math></span>) such that <span><math><mo>‖</mo><mi>x</mi><mo>+</mo><mi>ξ</mi><mi>y</mi><mo>‖</mo><mo>=</mo><mo>‖</mo><mi>x</mi><mo>‖</mo><mo>+</mo><mo>‖</mo><mi>y</mi><mo>‖</mo></math></span>. This paper characterizes linear maps preserving these pairs in <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>μ</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><mi>μ</mi><mo>)</mo></math></span> spaces, where non-strict convexity enables rich geometric structures absent in <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> spaces, with <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>∪</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> (for which all linear maps trivially preserve such pairs). We first resolve finite-dimensional cases: <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-norm TEA pair preservers are matrices with at most one nonzero entry per row. For <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>, TEA pair preservers are scalar multiples of isometries, except in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. These results extend to infinite dimensional spaces <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>Λ</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>Λ</mi><mo>)</mo></math></span>, and <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><mi>Λ</mi><mo>)</mo></math></span>, where TEA pair preservers are generalized permutation operators (for <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>) or scalar multiples of isometries (for <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>). In all cases, parallel pair preservers are either TEA pair preservers or rank one maps. Crucially, we generalize to measure-theoretic settings. For <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>μ</mi><mo>)</mo></math></span>, TEA pair preservers are automatically bounded and preserves disjointness; in many interesting cases, they are weighted compositions. Parallel pair preservers combine these with rank-one maps. For <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><mi>μ</mi><mo>)</mo></math></span>, bijective preservers are scalar isometries, establishing a dichotomy: <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> preservers reflect sparsity, while <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> preservers align with isometric symmetries. These results unify finite-dimensional, sequence-space, and general <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> settings, advancing the classification of structure-preserving operators in Banach spaces.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"553 2\",\"pages\":\"Article 129889\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25006705\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25006705","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Linear preservers of parallel/TEA vectors in Lp(μ) spaces
In normed vector spaces, two vectors are parallel (resp., triangle equality attaining (TEA)) if there is a scalar ξ with (resp., ) such that . This paper characterizes linear maps preserving these pairs in and spaces, where non-strict convexity enables rich geometric structures absent in spaces, with (for which all linear maps trivially preserve such pairs). We first resolve finite-dimensional cases: -norm TEA pair preservers are matrices with at most one nonzero entry per row. For , TEA pair preservers are scalar multiples of isometries, except in . These results extend to infinite dimensional spaces , , and , where TEA pair preservers are generalized permutation operators (for ) or scalar multiples of isometries (for and ). In all cases, parallel pair preservers are either TEA pair preservers or rank one maps. Crucially, we generalize to measure-theoretic settings. For , TEA pair preservers are automatically bounded and preserves disjointness; in many interesting cases, they are weighted compositions. Parallel pair preservers combine these with rank-one maps. For , bijective preservers are scalar isometries, establishing a dichotomy: preservers reflect sparsity, while preservers align with isometric symmetries. These results unify finite-dimensional, sequence-space, and general settings, advancing the classification of structure-preserving operators in Banach spaces.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.