{"title":"具有奇异势和非线性的半线性椭圆方程","authors":"Wanwan Wang , Ying Wang , Qingyong Liao","doi":"10.1016/j.jmaa.2025.129893","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is concerned with semilinear elliptic equations <span><math><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mfrac><mrow><mi>μ</mi></mrow><mrow><msup><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mi>u</mi><mo>=</mo><mfrac><mrow><mi>λ</mi></mrow><mrow><msup><mrow><mo>(</mo><mi>a</mi><mo>−</mo><mi>u</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></math></span> in a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> bounded convex domain Ω of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>, subject to the zero Dirichlet boundary conditions, where <span><math><mi>μ</mi><mo>∈</mo><mo>(</mo><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>,</mo><mn>0</mn><mo>)</mo></math></span> and <span><math><mi>ρ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mrow><mi>dist</mi></mrow><mo>(</mo><mi>x</mi><mo>,</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></math></span>. We analyze the properties of minimal solutions when <span><math><mi>λ</mi><mo>></mo><mn>0</mn></math></span> and the function <span><math><mi>a</mi><mo>:</mo><mover><mrow><mi>Ω</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>→</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> satisfying <span><math><mi>a</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≥</mo><mi>κ</mi><mi>ρ</mi><msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mi>γ</mi></mrow></msup></math></span> for some <span><math><mi>κ</mi><mo>></mo><mn>0</mn></math></span> and <span><math><mi>γ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>3</mn><mo>+</mo><msqrt><mrow><mn>1</mn><mo>+</mo><mn>4</mn><mi>μ</mi></mrow></msqrt></mrow><mrow><mn>4</mn></mrow></mfrac><mo>)</mo></math></span>. Moreover, the regularity and stability of the extremal solution are obtained.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 2","pages":"Article 129893"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semilinear elliptic equations with singular potentials and nonlinearities\",\"authors\":\"Wanwan Wang , Ying Wang , Qingyong Liao\",\"doi\":\"10.1016/j.jmaa.2025.129893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is concerned with semilinear elliptic equations <span><math><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mfrac><mrow><mi>μ</mi></mrow><mrow><msup><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mi>u</mi><mo>=</mo><mfrac><mrow><mi>λ</mi></mrow><mrow><msup><mrow><mo>(</mo><mi>a</mi><mo>−</mo><mi>u</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></math></span> in a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> bounded convex domain Ω of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>, subject to the zero Dirichlet boundary conditions, where <span><math><mi>μ</mi><mo>∈</mo><mo>(</mo><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>,</mo><mn>0</mn><mo>)</mo></math></span> and <span><math><mi>ρ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mrow><mi>dist</mi></mrow><mo>(</mo><mi>x</mi><mo>,</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></math></span>. We analyze the properties of minimal solutions when <span><math><mi>λ</mi><mo>></mo><mn>0</mn></math></span> and the function <span><math><mi>a</mi><mo>:</mo><mover><mrow><mi>Ω</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>→</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> satisfying <span><math><mi>a</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≥</mo><mi>κ</mi><mi>ρ</mi><msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mi>γ</mi></mrow></msup></math></span> for some <span><math><mi>κ</mi><mo>></mo><mn>0</mn></math></span> and <span><math><mi>γ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>3</mn><mo>+</mo><msqrt><mrow><mn>1</mn><mo>+</mo><mn>4</mn><mi>μ</mi></mrow></msqrt></mrow><mrow><mn>4</mn></mrow></mfrac><mo>)</mo></math></span>. Moreover, the regularity and stability of the extremal solution are obtained.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"553 2\",\"pages\":\"Article 129893\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25006742\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25006742","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Semilinear elliptic equations with singular potentials and nonlinearities
This paper is concerned with semilinear elliptic equations in a bounded convex domain Ω of , subject to the zero Dirichlet boundary conditions, where and . We analyze the properties of minimal solutions when and the function satisfying for some and . Moreover, the regularity and stability of the extremal solution are obtained.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.