{"title":"线性泛函微分不等式系统的正周期解","authors":"Robert Hakl , José Oyarce","doi":"10.1016/j.jmaa.2025.129882","DOIUrl":null,"url":null,"abstract":"<div><div>Consider the system of functional differential inequalities<span><span><span><math><mi>D</mi><mo>(</mo><mi>σ</mi><mo>)</mo><mo>[</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>−</mo><mi>ℓ</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>(</mo><mi>t</mi><mo>)</mo><mo>]</mo><mo>≥</mo><mn>0</mn><mspace></mspace><mtext>for a. e. </mtext><mspace></mspace><mi>t</mi><mo>∈</mo><mi>R</mi><mo>,</mo></math></span></span></span> where <span><math><mi>ℓ</mi><mo>:</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>→</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> is a linear bounded operator, <span><math><mi>σ</mi><mo>=</mo><msubsup><mrow><mo>(</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> where <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>, and <span><math><mi>D</mi><mo>(</mo><mi>σ</mi><mo>)</mo><mo>=</mo><mi>diag</mi><mo>(</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>. In the present paper, we establish conditions guaranteeing that there exists <span><math><mi>c</mi><mo>∈</mo><mspace></mspace><mo>]</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>[</mo></math></span> such that every absolutely continuous <em>ω</em>-periodic vector-valued function <span><math><mi>u</mi><mo>=</mo><msubsup><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> satisfying the above-mentioned differential inequality belongs to a cone<span><span><span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>=</mo><mrow><mo>{</mo><mi>u</mi><mo>∈</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>:</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>)</mo><mo>≥</mo><mi>c</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mspace></mspace><mtext> for </mtext><mspace></mspace><mi>s</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mi>R</mi><mspace></mspace><mo>(</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>)</mo><mo>}</mo></mrow><mo>.</mo></math></span></span></span> We denote the set of periodic linear operators <em>ℓ</em> with the above property by <span><math><msubsup><mrow><mi>U</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>(</mo><mi>σ</mi><mo>)</mo></math></span>. We further show that the set <span><math><msubsup><mrow><mi>U</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>(</mo><mi>σ</mi><mo>)</mo></math></span> is bounded from above, i.e., for every operator <span><math><mi>ℓ</mi><mo>∈</mo><msubsup><mrow><mi>U</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>(</mo><mi>σ</mi><mo>)</mo></math></span> and every <em>σ</em>-positive periodic operator <span><math><mover><mrow><mi>ℓ</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> there exists a positive threshold value <span><math><msup><mrow><mi>λ</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> such that <span><math><mi>ℓ</mi><mo>+</mo><mi>λ</mi><mover><mrow><mi>ℓ</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> belongs to <span><math><msubsup><mrow><mi>U</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>(</mo><mi>σ</mi><mo>)</mo></math></span> or does not, depending on whether the parameter <em>λ</em> is below or above <span><math><msup><mrow><mi>λ</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. Finally, we propose a numerical method how to estimate the threshold <span><math><msup><mrow><mi>λ</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> in particular cases. This method is described and illustrated by several examples. Possible applications to population models are discussed in the end of the paper.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 2","pages":"Article 129882"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive periodic solutions for systems of linear functional differential inequalities\",\"authors\":\"Robert Hakl , José Oyarce\",\"doi\":\"10.1016/j.jmaa.2025.129882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Consider the system of functional differential inequalities<span><span><span><math><mi>D</mi><mo>(</mo><mi>σ</mi><mo>)</mo><mo>[</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>−</mo><mi>ℓ</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>(</mo><mi>t</mi><mo>)</mo><mo>]</mo><mo>≥</mo><mn>0</mn><mspace></mspace><mtext>for a. e. </mtext><mspace></mspace><mi>t</mi><mo>∈</mo><mi>R</mi><mo>,</mo></math></span></span></span> where <span><math><mi>ℓ</mi><mo>:</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>→</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> is a linear bounded operator, <span><math><mi>σ</mi><mo>=</mo><msubsup><mrow><mo>(</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> where <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>, and <span><math><mi>D</mi><mo>(</mo><mi>σ</mi><mo>)</mo><mo>=</mo><mi>diag</mi><mo>(</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>. In the present paper, we establish conditions guaranteeing that there exists <span><math><mi>c</mi><mo>∈</mo><mspace></mspace><mo>]</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>[</mo></math></span> such that every absolutely continuous <em>ω</em>-periodic vector-valued function <span><math><mi>u</mi><mo>=</mo><msubsup><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> satisfying the above-mentioned differential inequality belongs to a cone<span><span><span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>=</mo><mrow><mo>{</mo><mi>u</mi><mo>∈</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>:</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>)</mo><mo>≥</mo><mi>c</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mspace></mspace><mtext> for </mtext><mspace></mspace><mi>s</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mi>R</mi><mspace></mspace><mo>(</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>)</mo><mo>}</mo></mrow><mo>.</mo></math></span></span></span> We denote the set of periodic linear operators <em>ℓ</em> with the above property by <span><math><msubsup><mrow><mi>U</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>(</mo><mi>σ</mi><mo>)</mo></math></span>. We further show that the set <span><math><msubsup><mrow><mi>U</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>(</mo><mi>σ</mi><mo>)</mo></math></span> is bounded from above, i.e., for every operator <span><math><mi>ℓ</mi><mo>∈</mo><msubsup><mrow><mi>U</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>(</mo><mi>σ</mi><mo>)</mo></math></span> and every <em>σ</em>-positive periodic operator <span><math><mover><mrow><mi>ℓ</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> there exists a positive threshold value <span><math><msup><mrow><mi>λ</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> such that <span><math><mi>ℓ</mi><mo>+</mo><mi>λ</mi><mover><mrow><mi>ℓ</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> belongs to <span><math><msubsup><mrow><mi>U</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>(</mo><mi>σ</mi><mo>)</mo></math></span> or does not, depending on whether the parameter <em>λ</em> is below or above <span><math><msup><mrow><mi>λ</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. Finally, we propose a numerical method how to estimate the threshold <span><math><msup><mrow><mi>λ</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> in particular cases. This method is described and illustrated by several examples. Possible applications to population models are discussed in the end of the paper.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"553 2\",\"pages\":\"Article 129882\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25006638\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25006638","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Positive periodic solutions for systems of linear functional differential inequalities
Consider the system of functional differential inequalities where is a linear bounded operator, where , and . In the present paper, we establish conditions guaranteeing that there exists such that every absolutely continuous ω-periodic vector-valued function satisfying the above-mentioned differential inequality belongs to a cone We denote the set of periodic linear operators ℓ with the above property by . We further show that the set is bounded from above, i.e., for every operator and every σ-positive periodic operator there exists a positive threshold value such that belongs to or does not, depending on whether the parameter λ is below or above . Finally, we propose a numerical method how to estimate the threshold in particular cases. This method is described and illustrated by several examples. Possible applications to population models are discussed in the end of the paper.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.