Tong Zhan , Shuang-Rui Bao , Ying Sun , Hong-Yan Wu , Wen-Kang Tao , Xin-Ru Liang , Zhi-Yan Wan , Qian Yang , Hua Wang , Yi-Chao Huang , Jian-Qing Wang , De-Xiang Xu , Cheng Zhang
{"title":"α-酮戊二酸对妊娠期砷暴露扰乱的母体脂质稳态和线粒体状态的影响","authors":"Tong Zhan , Shuang-Rui Bao , Ying Sun , Hong-Yan Wu , Wen-Kang Tao , Xin-Ru Liang , Zhi-Yan Wan , Qian Yang , Hua Wang , Yi-Chao Huang , Jian-Qing Wang , De-Xiang Xu , Cheng Zhang","doi":"10.1016/j.bbalip.2025.159665","DOIUrl":null,"url":null,"abstract":"<div><div>Arsenic is a common environmental toxicant with known hepatotoxic effects, yet its impact on maternal lipid metabolism during pregnancy remains poorly understood. In this study, we established a pregnant mouse model to investigate the effects of gestational arsenic exposure and the potential protective role of α-ketoglutarate (α-KG), a key tricarboxylic acid (TCA) cycle intermediate. In the first experiment, arsenic exposure led to significant disruptions in maternal serum and hepatic lipid profiles. Mechanistically, arsenic reduced hepatic α-KG concentrations, impaired mitochondrial ultrastructure, altered mitochondria-related gene expression, induced oxidative stress, and decreased multiple TCA cycle intermediates, collectively indicating compromised mitochondrial function. In the second experiment, α-KG supplementation during gestation effectively restored hepatic α-KG levels and reversed arsenic-induced lipid metabolic imbalances. Moreover, α-KG preserved mitochondrial morphology, normalized the expression of mitochondrial genes, alleviated oxidative stress, and partially rescued the levels of disrupted TCA intermediates. These results suggest that arsenic disrupts maternal lipid homeostasis primarily through mitochondrial dysfunction and oxidative stress, and that α-KG supplementation can alleviate these disturbances by supporting mitochondrial function. Although the exact molecular mechanisms require further clarification, our findings highlight the potential therapeutic role of α-KG in maintaining maternal lipid metabolic health during arsenic exposure during pregnancy.</div></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":"1870 7","pages":"Article 159665"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of α-ketoglutarate on maternal lipid homeostasis and mitochondrial status perturbed by gestational arsenic exposure\",\"authors\":\"Tong Zhan , Shuang-Rui Bao , Ying Sun , Hong-Yan Wu , Wen-Kang Tao , Xin-Ru Liang , Zhi-Yan Wan , Qian Yang , Hua Wang , Yi-Chao Huang , Jian-Qing Wang , De-Xiang Xu , Cheng Zhang\",\"doi\":\"10.1016/j.bbalip.2025.159665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Arsenic is a common environmental toxicant with known hepatotoxic effects, yet its impact on maternal lipid metabolism during pregnancy remains poorly understood. In this study, we established a pregnant mouse model to investigate the effects of gestational arsenic exposure and the potential protective role of α-ketoglutarate (α-KG), a key tricarboxylic acid (TCA) cycle intermediate. In the first experiment, arsenic exposure led to significant disruptions in maternal serum and hepatic lipid profiles. Mechanistically, arsenic reduced hepatic α-KG concentrations, impaired mitochondrial ultrastructure, altered mitochondria-related gene expression, induced oxidative stress, and decreased multiple TCA cycle intermediates, collectively indicating compromised mitochondrial function. In the second experiment, α-KG supplementation during gestation effectively restored hepatic α-KG levels and reversed arsenic-induced lipid metabolic imbalances. Moreover, α-KG preserved mitochondrial morphology, normalized the expression of mitochondrial genes, alleviated oxidative stress, and partially rescued the levels of disrupted TCA intermediates. These results suggest that arsenic disrupts maternal lipid homeostasis primarily through mitochondrial dysfunction and oxidative stress, and that α-KG supplementation can alleviate these disturbances by supporting mitochondrial function. Although the exact molecular mechanisms require further clarification, our findings highlight the potential therapeutic role of α-KG in maintaining maternal lipid metabolic health during arsenic exposure during pregnancy.</div></div>\",\"PeriodicalId\":8815,\"journal\":{\"name\":\"Biochimica et biophysica acta. Molecular and cell biology of lipids\",\"volume\":\"1870 7\",\"pages\":\"Article 159665\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Molecular and cell biology of lipids\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388198125000733\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular and cell biology of lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388198125000733","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Effect of α-ketoglutarate on maternal lipid homeostasis and mitochondrial status perturbed by gestational arsenic exposure
Arsenic is a common environmental toxicant with known hepatotoxic effects, yet its impact on maternal lipid metabolism during pregnancy remains poorly understood. In this study, we established a pregnant mouse model to investigate the effects of gestational arsenic exposure and the potential protective role of α-ketoglutarate (α-KG), a key tricarboxylic acid (TCA) cycle intermediate. In the first experiment, arsenic exposure led to significant disruptions in maternal serum and hepatic lipid profiles. Mechanistically, arsenic reduced hepatic α-KG concentrations, impaired mitochondrial ultrastructure, altered mitochondria-related gene expression, induced oxidative stress, and decreased multiple TCA cycle intermediates, collectively indicating compromised mitochondrial function. In the second experiment, α-KG supplementation during gestation effectively restored hepatic α-KG levels and reversed arsenic-induced lipid metabolic imbalances. Moreover, α-KG preserved mitochondrial morphology, normalized the expression of mitochondrial genes, alleviated oxidative stress, and partially rescued the levels of disrupted TCA intermediates. These results suggest that arsenic disrupts maternal lipid homeostasis primarily through mitochondrial dysfunction and oxidative stress, and that α-KG supplementation can alleviate these disturbances by supporting mitochondrial function. Although the exact molecular mechanisms require further clarification, our findings highlight the potential therapeutic role of α-KG in maintaining maternal lipid metabolic health during arsenic exposure during pregnancy.
期刊介绍:
BBA Molecular and Cell Biology of Lipids publishes papers on original research dealing with novel aspects of molecular genetics related to the lipidome, the biosynthesis of lipids, the role of lipids in cells and whole organisms, the regulation of lipid metabolism and function, and lipidomics in all organisms. Manuscripts should significantly advance the understanding of the molecular mechanisms underlying biological processes in which lipids are involved. Papers detailing novel methodology must report significant biochemical, molecular, or functional insight in the area of lipids.