{"title":"图的度截断选择能力","authors":"Huan Zhou, Jialu Zhu, Xuding Zhu","doi":"10.1016/j.jctb.2025.07.003","DOIUrl":null,"url":null,"abstract":"<div><div>A graph <em>G</em> is called degree-truncated <em>k</em>-choosable if for every list assignment <em>L</em> with <span><math><mo>|</mo><mi>L</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mi>min</mi><mo></mo><mo>{</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>v</mi><mo>)</mo><mo>,</mo><mi>k</mi><mo>}</mo></math></span> for each vertex <em>v</em>, <em>G</em> is <em>L</em>-colourable. Richter asked whether every 3-connected non-complete planar graph is degree-truncated 6-choosable. We answer this question in negative by constructing a 3-connected non-complete planar graph which is not degree-truncated 7-choosable. Then we prove that every 3-connected non-complete planar graph is degree-truncated 16-DP-colourable (and hence degree-truncated 16-choosable). We further prove that for an arbitrary proper minor closed family <span><math><mi>G</mi></math></span> of graphs, let <em>s</em> be the minimum integer such that <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>∉</mo><mi>G</mi></math></span> for some <em>t</em>, then there is a constant <em>k</em> such that every <em>s</em>-connected graph <span><math><mi>G</mi><mo>∈</mo><mi>G</mi></math></span> other than a GDP tree is degree-truncated DP-<em>k</em>-colourable (and hence degree-truncated <em>k</em>-choosable), where a GDP-tree is a graph whose blocks are complete graphs or cycles. In particular, for any surface Σ, there is a constant <em>k</em> such that every 3-connected non-complete graph embeddable on Σ is degree-truncated DP-<em>k</em>-colourable (and hence degree-truncated <em>k</em>-choosable). The <em>s</em>-connectedness for graphs in <span><math><mi>G</mi></math></span> (and 3-connectedness for graphs embeddable on Σ) is necessary, as for any positive integer <em>k</em>, <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>−</mo><mn>1</mn><mo>,</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>s</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></msub><mo>∈</mo><mi>G</mi></math></span> (<span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn><mo>,</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> is planar) is not degree-truncated <em>k</em>-choosable. Also, non-completeness is a necessary condition, as complete graphs are not degree-choosable.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"175 ","pages":"Pages 171-186"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degree-truncated choosability of graphs\",\"authors\":\"Huan Zhou, Jialu Zhu, Xuding Zhu\",\"doi\":\"10.1016/j.jctb.2025.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A graph <em>G</em> is called degree-truncated <em>k</em>-choosable if for every list assignment <em>L</em> with <span><math><mo>|</mo><mi>L</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mi>min</mi><mo></mo><mo>{</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>v</mi><mo>)</mo><mo>,</mo><mi>k</mi><mo>}</mo></math></span> for each vertex <em>v</em>, <em>G</em> is <em>L</em>-colourable. Richter asked whether every 3-connected non-complete planar graph is degree-truncated 6-choosable. We answer this question in negative by constructing a 3-connected non-complete planar graph which is not degree-truncated 7-choosable. Then we prove that every 3-connected non-complete planar graph is degree-truncated 16-DP-colourable (and hence degree-truncated 16-choosable). We further prove that for an arbitrary proper minor closed family <span><math><mi>G</mi></math></span> of graphs, let <em>s</em> be the minimum integer such that <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>∉</mo><mi>G</mi></math></span> for some <em>t</em>, then there is a constant <em>k</em> such that every <em>s</em>-connected graph <span><math><mi>G</mi><mo>∈</mo><mi>G</mi></math></span> other than a GDP tree is degree-truncated DP-<em>k</em>-colourable (and hence degree-truncated <em>k</em>-choosable), where a GDP-tree is a graph whose blocks are complete graphs or cycles. In particular, for any surface Σ, there is a constant <em>k</em> such that every 3-connected non-complete graph embeddable on Σ is degree-truncated DP-<em>k</em>-colourable (and hence degree-truncated <em>k</em>-choosable). The <em>s</em>-connectedness for graphs in <span><math><mi>G</mi></math></span> (and 3-connectedness for graphs embeddable on Σ) is necessary, as for any positive integer <em>k</em>, <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>−</mo><mn>1</mn><mo>,</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>s</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></msub><mo>∈</mo><mi>G</mi></math></span> (<span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn><mo>,</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> is planar) is not degree-truncated <em>k</em>-choosable. Also, non-completeness is a necessary condition, as complete graphs are not degree-choosable.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"175 \",\"pages\":\"Pages 171-186\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895625000498\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000498","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A graph G is called degree-truncated k-choosable if for every list assignment L with for each vertex v, G is L-colourable. Richter asked whether every 3-connected non-complete planar graph is degree-truncated 6-choosable. We answer this question in negative by constructing a 3-connected non-complete planar graph which is not degree-truncated 7-choosable. Then we prove that every 3-connected non-complete planar graph is degree-truncated 16-DP-colourable (and hence degree-truncated 16-choosable). We further prove that for an arbitrary proper minor closed family of graphs, let s be the minimum integer such that for some t, then there is a constant k such that every s-connected graph other than a GDP tree is degree-truncated DP-k-colourable (and hence degree-truncated k-choosable), where a GDP-tree is a graph whose blocks are complete graphs or cycles. In particular, for any surface Σ, there is a constant k such that every 3-connected non-complete graph embeddable on Σ is degree-truncated DP-k-colourable (and hence degree-truncated k-choosable). The s-connectedness for graphs in (and 3-connectedness for graphs embeddable on Σ) is necessary, as for any positive integer k, ( is planar) is not degree-truncated k-choosable. Also, non-completeness is a necessary condition, as complete graphs are not degree-choosable.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.