图的度截断选择能力

IF 1.2 1区 数学 Q1 MATHEMATICS
Huan Zhou, Jialu Zhu, Xuding Zhu
{"title":"图的度截断选择能力","authors":"Huan Zhou,&nbsp;Jialu Zhu,&nbsp;Xuding Zhu","doi":"10.1016/j.jctb.2025.07.003","DOIUrl":null,"url":null,"abstract":"<div><div>A graph <em>G</em> is called degree-truncated <em>k</em>-choosable if for every list assignment <em>L</em> with <span><math><mo>|</mo><mi>L</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>v</mi><mo>)</mo><mo>,</mo><mi>k</mi><mo>}</mo></math></span> for each vertex <em>v</em>, <em>G</em> is <em>L</em>-colourable. Richter asked whether every 3-connected non-complete planar graph is degree-truncated 6-choosable. We answer this question in negative by constructing a 3-connected non-complete planar graph which is not degree-truncated 7-choosable. Then we prove that every 3-connected non-complete planar graph is degree-truncated 16-DP-colourable (and hence degree-truncated 16-choosable). We further prove that for an arbitrary proper minor closed family <span><math><mi>G</mi></math></span> of graphs, let <em>s</em> be the minimum integer such that <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>∉</mo><mi>G</mi></math></span> for some <em>t</em>, then there is a constant <em>k</em> such that every <em>s</em>-connected graph <span><math><mi>G</mi><mo>∈</mo><mi>G</mi></math></span> other than a GDP tree is degree-truncated DP-<em>k</em>-colourable (and hence degree-truncated <em>k</em>-choosable), where a GDP-tree is a graph whose blocks are complete graphs or cycles. In particular, for any surface Σ, there is a constant <em>k</em> such that every 3-connected non-complete graph embeddable on Σ is degree-truncated DP-<em>k</em>-colourable (and hence degree-truncated <em>k</em>-choosable). The <em>s</em>-connectedness for graphs in <span><math><mi>G</mi></math></span> (and 3-connectedness for graphs embeddable on Σ) is necessary, as for any positive integer <em>k</em>, <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>−</mo><mn>1</mn><mo>,</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>s</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></msub><mo>∈</mo><mi>G</mi></math></span> (<span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn><mo>,</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> is planar) is not degree-truncated <em>k</em>-choosable. Also, non-completeness is a necessary condition, as complete graphs are not degree-choosable.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"175 ","pages":"Pages 171-186"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degree-truncated choosability of graphs\",\"authors\":\"Huan Zhou,&nbsp;Jialu Zhu,&nbsp;Xuding Zhu\",\"doi\":\"10.1016/j.jctb.2025.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A graph <em>G</em> is called degree-truncated <em>k</em>-choosable if for every list assignment <em>L</em> with <span><math><mo>|</mo><mi>L</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>v</mi><mo>)</mo><mo>,</mo><mi>k</mi><mo>}</mo></math></span> for each vertex <em>v</em>, <em>G</em> is <em>L</em>-colourable. Richter asked whether every 3-connected non-complete planar graph is degree-truncated 6-choosable. We answer this question in negative by constructing a 3-connected non-complete planar graph which is not degree-truncated 7-choosable. Then we prove that every 3-connected non-complete planar graph is degree-truncated 16-DP-colourable (and hence degree-truncated 16-choosable). We further prove that for an arbitrary proper minor closed family <span><math><mi>G</mi></math></span> of graphs, let <em>s</em> be the minimum integer such that <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>∉</mo><mi>G</mi></math></span> for some <em>t</em>, then there is a constant <em>k</em> such that every <em>s</em>-connected graph <span><math><mi>G</mi><mo>∈</mo><mi>G</mi></math></span> other than a GDP tree is degree-truncated DP-<em>k</em>-colourable (and hence degree-truncated <em>k</em>-choosable), where a GDP-tree is a graph whose blocks are complete graphs or cycles. In particular, for any surface Σ, there is a constant <em>k</em> such that every 3-connected non-complete graph embeddable on Σ is degree-truncated DP-<em>k</em>-colourable (and hence degree-truncated <em>k</em>-choosable). The <em>s</em>-connectedness for graphs in <span><math><mi>G</mi></math></span> (and 3-connectedness for graphs embeddable on Σ) is necessary, as for any positive integer <em>k</em>, <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>−</mo><mn>1</mn><mo>,</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>s</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></msub><mo>∈</mo><mi>G</mi></math></span> (<span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn><mo>,</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> is planar) is not degree-truncated <em>k</em>-choosable. Also, non-completeness is a necessary condition, as complete graphs are not degree-choosable.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"175 \",\"pages\":\"Pages 171-186\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895625000498\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000498","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

图G称为度截断k-可选,如果对于每一个列表赋值L,当|L(v)|≥min (dG(v),k)时,对于每个顶点v, G是L-可着色的。Richter问是否每一个3连通的非完全平面图都是度截断6可选的。通过构造一个不截断7度的3连通非完全平面图,否定地回答了这个问题。然后我们证明了每一个3连通的非完全平面图都是截断度的16- dp可着色的(因此截断度的16- dp是可选择的)。我们进一步证明,对于任意一个图的固有小闭科G,设s为最小整数,使得k,t∈G对于某t,则存在一个常数k,使得除GDP树以外的每一个s连通图G∈G都是截断度的dp -k可着色的(因此是截断度的k可选择的),其中GDP树是其块为完全图或环的图。特别地,对于任意曲面Σ,存在一个常数k,使得每个可嵌入Σ上的3连通非完全图都是度截断的dp -k可着色的(因此度截断的k是可选择的)。G中的图的s连通性(以及可嵌入到Σ上的图的3连通性)是必要的,因为对于任何正整数k, Ks−1,Ks−1∈G (K2, K2是平面的)不是度截断的k可选的。此外,非完备性是一个必要条件,因为完全图是不可度选择的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Degree-truncated choosability of graphs
A graph G is called degree-truncated k-choosable if for every list assignment L with |L(v)|min{dG(v),k} for each vertex v, G is L-colourable. Richter asked whether every 3-connected non-complete planar graph is degree-truncated 6-choosable. We answer this question in negative by constructing a 3-connected non-complete planar graph which is not degree-truncated 7-choosable. Then we prove that every 3-connected non-complete planar graph is degree-truncated 16-DP-colourable (and hence degree-truncated 16-choosable). We further prove that for an arbitrary proper minor closed family G of graphs, let s be the minimum integer such that Ks,tG for some t, then there is a constant k such that every s-connected graph GG other than a GDP tree is degree-truncated DP-k-colourable (and hence degree-truncated k-choosable), where a GDP-tree is a graph whose blocks are complete graphs or cycles. In particular, for any surface Σ, there is a constant k such that every 3-connected non-complete graph embeddable on Σ is degree-truncated DP-k-colourable (and hence degree-truncated k-choosable). The s-connectedness for graphs in G (and 3-connectedness for graphs embeddable on Σ) is necessary, as for any positive integer k, Ks1,ks1G (K2,k2 is planar) is not degree-truncated k-choosable. Also, non-completeness is a necessary condition, as complete graphs are not degree-choosable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信