基于多级协同优化的内存状态逻辑系统鲁棒高效构建新范式

IF 3.1 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhoujie Pan , DingYi Zhang , Yanming Liu , He Tian
{"title":"基于多级协同优化的内存状态逻辑系统鲁棒高效构建新范式","authors":"Zhoujie Pan ,&nbsp;DingYi Zhang ,&nbsp;Yanming Liu ,&nbsp;He Tian","doi":"10.1016/j.mee.2025.112379","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a new paradigm of memristor-based in-memory stateful logic computing. Based on multi-level co-optimization. In device level, with the aid of Mirrored RRAM Device (MRD), we develop a scheme to build basic logics by a single device in a reconfigurable manner. Furthermore, we also proposed a method for cascading logic to construct more complex logic. Compared to existing architectures, our MRD based method exhibits robustness against voltage and device variations, and eliminates the need for multiple reference voltages. Our method also support execution of more complex logic operations, such as 1-bit full adders, through a cascaded configuration in just three steps using four MRD devices. SPICE simulations have been conducted to validate the feasibility of our approach. These advancements position the MRD as a promising candidate for scalable and efficient in-memory computing applications.</div></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"300 ","pages":"Article 112379"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A robust and efficient new paradigm for building in-memory stateful logic system with memristor: Based on multi-level co-optimization\",\"authors\":\"Zhoujie Pan ,&nbsp;DingYi Zhang ,&nbsp;Yanming Liu ,&nbsp;He Tian\",\"doi\":\"10.1016/j.mee.2025.112379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces a new paradigm of memristor-based in-memory stateful logic computing. Based on multi-level co-optimization. In device level, with the aid of Mirrored RRAM Device (MRD), we develop a scheme to build basic logics by a single device in a reconfigurable manner. Furthermore, we also proposed a method for cascading logic to construct more complex logic. Compared to existing architectures, our MRD based method exhibits robustness against voltage and device variations, and eliminates the need for multiple reference voltages. Our method also support execution of more complex logic operations, such as 1-bit full adders, through a cascaded configuration in just three steps using four MRD devices. SPICE simulations have been conducted to validate the feasibility of our approach. These advancements position the MRD as a promising candidate for scalable and efficient in-memory computing applications.</div></div>\",\"PeriodicalId\":18557,\"journal\":{\"name\":\"Microelectronic Engineering\",\"volume\":\"300 \",\"pages\":\"Article 112379\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167931725000681\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167931725000681","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于忆阻器的内存状态逻辑计算的新范式。基于多级协同优化。在器件级,借助镜像RRAM器件(MRD),我们开发了一种以可重构方式由单个器件构建基本逻辑的方案。此外,我们还提出了一种层叠逻辑的方法来构造更复杂的逻辑。与现有架构相比,我们基于MRD的方法对电压和器件变化具有鲁棒性,并且消除了对多个参考电压的需求。我们的方法还支持执行更复杂的逻辑操作,例如1位全加法器,通过级联配置,使用四个MRD设备只需三步。SPICE模拟验证了我们方法的可行性。这些进步将MRD定位为可扩展和高效内存计算应用程序的有前途的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A robust and efficient new paradigm for building in-memory stateful logic system with memristor: Based on multi-level co-optimization

A robust and efficient new paradigm for building in-memory stateful logic system with memristor: Based on multi-level co-optimization
This paper introduces a new paradigm of memristor-based in-memory stateful logic computing. Based on multi-level co-optimization. In device level, with the aid of Mirrored RRAM Device (MRD), we develop a scheme to build basic logics by a single device in a reconfigurable manner. Furthermore, we also proposed a method for cascading logic to construct more complex logic. Compared to existing architectures, our MRD based method exhibits robustness against voltage and device variations, and eliminates the need for multiple reference voltages. Our method also support execution of more complex logic operations, such as 1-bit full adders, through a cascaded configuration in just three steps using four MRD devices. SPICE simulations have been conducted to validate the feasibility of our approach. These advancements position the MRD as a promising candidate for scalable and efficient in-memory computing applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microelectronic Engineering
Microelectronic Engineering 工程技术-工程:电子与电气
CiteScore
5.30
自引率
4.30%
发文量
131
审稿时长
29 days
期刊介绍: Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信