Marit E. Scott , Bruce D. Beynnon , Andrew S. Borah , John C. Ramsdell , Mickey I. Krug , Mack G. Gardner-Morse , Michael J. DeSarno , Jiming Zhang , Matthew Geeslin , Mathew J. Failla , Timothy W. Tourville , Niccolo M. Fiorentino
{"title":"定量mri测量了健康成人在施加载荷下胫股软骨的组成变化,尽管有小的机械测量","authors":"Marit E. Scott , Bruce D. Beynnon , Andrew S. Borah , John C. Ramsdell , Mickey I. Krug , Mack G. Gardner-Morse , Michael J. DeSarno , Jiming Zhang , Matthew Geeslin , Mathew J. Failla , Timothy W. Tourville , Niccolo M. Fiorentino","doi":"10.1016/j.jbiomech.2025.112864","DOIUrl":null,"url":null,"abstract":"<div><div>A crucial step in understanding the onset and progression of cartilaginous disease, such as osteoarthritis, is to study how cartilage mechanics and composition relate in response to controlled loading in disease-free joints. Both knees of 10 healthy participants were imaged with a 3 T magnetic resonance imaging (MRI) scanner at two timepoints (7 ± 3 days apart). Quantitative MR images for T1ρ and T2* were acquired with the knee in two states: <em>i)</em> a traditional setup without load applied, and <em>ii)</em> while a loading device applied a 40% bodyweight load to the plantar aspect of the foot. Associations between mechanical metrics (cartilage deformation, cartilage strain, change in bone-bone distance, and change in cartilage contact area) and compositional metrics (T1ρ and T2* relaxation times) were identified. Significant decreases in bone-bone distance were seen in all compartments in response to load. Articular cartilage thickness consistently decreased, but differences were significant for only half of the medial and lateral compartments in the tibia and femur. Strains ranged from 4.9% in compression to 0.3% in tension. No significant changes were found in cartilage contact area. T1ρ and T2* relaxation times changed significantly with the application of load, with the femoral and tibial cartilage exhibiting opposite responses. No significant associations were observed between mechanical and compositional metrics for T1ρ scans, but T2* scans had three significant relationships. Results from this work demonstrate that loading can induce tibiofemoral articular cartilage composition changes, as assessed with T1ρ and T2*, even with small magnitude measurements of mechanics.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"190 ","pages":"Article 112864"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative MRI-measured composition changes despite small mechanical measures in tibiofemoral cartilage of healthy adults under applied load\",\"authors\":\"Marit E. Scott , Bruce D. Beynnon , Andrew S. Borah , John C. Ramsdell , Mickey I. Krug , Mack G. Gardner-Morse , Michael J. DeSarno , Jiming Zhang , Matthew Geeslin , Mathew J. Failla , Timothy W. Tourville , Niccolo M. Fiorentino\",\"doi\":\"10.1016/j.jbiomech.2025.112864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A crucial step in understanding the onset and progression of cartilaginous disease, such as osteoarthritis, is to study how cartilage mechanics and composition relate in response to controlled loading in disease-free joints. Both knees of 10 healthy participants were imaged with a 3 T magnetic resonance imaging (MRI) scanner at two timepoints (7 ± 3 days apart). Quantitative MR images for T1ρ and T2* were acquired with the knee in two states: <em>i)</em> a traditional setup without load applied, and <em>ii)</em> while a loading device applied a 40% bodyweight load to the plantar aspect of the foot. Associations between mechanical metrics (cartilage deformation, cartilage strain, change in bone-bone distance, and change in cartilage contact area) and compositional metrics (T1ρ and T2* relaxation times) were identified. Significant decreases in bone-bone distance were seen in all compartments in response to load. Articular cartilage thickness consistently decreased, but differences were significant for only half of the medial and lateral compartments in the tibia and femur. Strains ranged from 4.9% in compression to 0.3% in tension. No significant changes were found in cartilage contact area. T1ρ and T2* relaxation times changed significantly with the application of load, with the femoral and tibial cartilage exhibiting opposite responses. No significant associations were observed between mechanical and compositional metrics for T1ρ scans, but T2* scans had three significant relationships. Results from this work demonstrate that loading can induce tibiofemoral articular cartilage composition changes, as assessed with T1ρ and T2*, even with small magnitude measurements of mechanics.</div></div>\",\"PeriodicalId\":15168,\"journal\":{\"name\":\"Journal of biomechanics\",\"volume\":\"190 \",\"pages\":\"Article 112864\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021929025003768\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929025003768","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Quantitative MRI-measured composition changes despite small mechanical measures in tibiofemoral cartilage of healthy adults under applied load
A crucial step in understanding the onset and progression of cartilaginous disease, such as osteoarthritis, is to study how cartilage mechanics and composition relate in response to controlled loading in disease-free joints. Both knees of 10 healthy participants were imaged with a 3 T magnetic resonance imaging (MRI) scanner at two timepoints (7 ± 3 days apart). Quantitative MR images for T1ρ and T2* were acquired with the knee in two states: i) a traditional setup without load applied, and ii) while a loading device applied a 40% bodyweight load to the plantar aspect of the foot. Associations between mechanical metrics (cartilage deformation, cartilage strain, change in bone-bone distance, and change in cartilage contact area) and compositional metrics (T1ρ and T2* relaxation times) were identified. Significant decreases in bone-bone distance were seen in all compartments in response to load. Articular cartilage thickness consistently decreased, but differences were significant for only half of the medial and lateral compartments in the tibia and femur. Strains ranged from 4.9% in compression to 0.3% in tension. No significant changes were found in cartilage contact area. T1ρ and T2* relaxation times changed significantly with the application of load, with the femoral and tibial cartilage exhibiting opposite responses. No significant associations were observed between mechanical and compositional metrics for T1ρ scans, but T2* scans had three significant relationships. Results from this work demonstrate that loading can induce tibiofemoral articular cartilage composition changes, as assessed with T1ρ and T2*, even with small magnitude measurements of mechanics.
期刊介绍:
The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership.
Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to:
-Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells.
-Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions.
-Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response.
-Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing.
-Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine.
-Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction.
-Molecular Biomechanics - Mechanical analyses of biomolecules.
-Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints.
-Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics.
-Sports Biomechanics - Mechanical analyses of sports performance.