基于深度ReLU神经网络的Sobolev和Besov函数的最优逼近

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Yunfei Yang
{"title":"基于深度ReLU神经网络的Sobolev和Besov函数的最优逼近","authors":"Yunfei Yang","doi":"10.1016/j.acha.2025.101797","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the problem of how efficiently functions in the Sobolev spaces <span><math><msup><mrow><mi>W</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> and Besov spaces <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>r</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> can be approximated by deep ReLU neural networks with width <em>W</em> and depth <em>L</em>, when the error is measured in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> norm. This problem has been studied by several recent works, which obtained the approximation rate <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><mi>W</mi><mi>L</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>2</mn><mi>s</mi><mo>/</mo><mi>d</mi></mrow></msup><mo>)</mo></math></span> up to logarithmic factors when <span><math><mi>p</mi><mo>=</mo><mi>q</mi><mo>=</mo><mo>∞</mo></math></span>, and the rate <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>−</mo><mn>2</mn><mi>s</mi><mo>/</mo><mi>d</mi></mrow></msup><mo>)</mo></math></span> for networks with fixed width when the Sobolev embedding condition <span><math><mn>1</mn><mo>/</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>/</mo><mi>p</mi><mo>&lt;</mo><mi>s</mi><mo>/</mo><mi>d</mi></math></span> holds. We generalize these results by showing that the rate <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><mi>W</mi><mi>L</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>2</mn><mi>s</mi><mo>/</mo><mi>d</mi></mrow></msup><mo>)</mo></math></span> indeed holds under the Sobolev embedding condition. It is known that this rate is optimal up to logarithmic factors. The key tool in our proof is a novel encoding of sparse vectors by using deep ReLU neural networks with varied width and depth, which may be of independent interest.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"79 ","pages":"Article 101797"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the optimal approximation of Sobolev and Besov functions using deep ReLU neural networks\",\"authors\":\"Yunfei Yang\",\"doi\":\"10.1016/j.acha.2025.101797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper studies the problem of how efficiently functions in the Sobolev spaces <span><math><msup><mrow><mi>W</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> and Besov spaces <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>r</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> can be approximated by deep ReLU neural networks with width <em>W</em> and depth <em>L</em>, when the error is measured in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> norm. This problem has been studied by several recent works, which obtained the approximation rate <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><mi>W</mi><mi>L</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>2</mn><mi>s</mi><mo>/</mo><mi>d</mi></mrow></msup><mo>)</mo></math></span> up to logarithmic factors when <span><math><mi>p</mi><mo>=</mo><mi>q</mi><mo>=</mo><mo>∞</mo></math></span>, and the rate <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>−</mo><mn>2</mn><mi>s</mi><mo>/</mo><mi>d</mi></mrow></msup><mo>)</mo></math></span> for networks with fixed width when the Sobolev embedding condition <span><math><mn>1</mn><mo>/</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>/</mo><mi>p</mi><mo>&lt;</mo><mi>s</mi><mo>/</mo><mi>d</mi></math></span> holds. We generalize these results by showing that the rate <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><mi>W</mi><mi>L</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>2</mn><mi>s</mi><mo>/</mo><mi>d</mi></mrow></msup><mo>)</mo></math></span> indeed holds under the Sobolev embedding condition. It is known that this rate is optimal up to logarithmic factors. The key tool in our proof is a novel encoding of sparse vectors by using deep ReLU neural networks with varied width and depth, which may be of independent interest.</div></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"79 \",\"pages\":\"Article 101797\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S106352032500051X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S106352032500051X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了当误差在Lp([0,1]d)范数中测量时,如何有效地逼近Sobolev空间Ws,q([0,1]d)和Besov空间Bq,rs([0,1]d)中宽度为W,深度为L的深度ReLU神经网络。最近的一些研究已经得到了这一问题,当p=q=∞时,得到了对数因子的近似速率O((WL)−2s/d),当Sobolev嵌入条件1/q−1/p<;s/d成立时,得到了固定宽度网络的近似速率O(L−2s/d)。我们推广了这些结果,证明在Sobolev嵌入条件下,速率O((WL)−2s/d)确实成立。众所周知,这个速率在对数因子范围内是最优的。我们证明的关键工具是使用具有不同宽度和深度的深度ReLU神经网络对稀疏向量进行新的编码,这可能是独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the optimal approximation of Sobolev and Besov functions using deep ReLU neural networks
This paper studies the problem of how efficiently functions in the Sobolev spaces Ws,q([0,1]d) and Besov spaces Bq,rs([0,1]d) can be approximated by deep ReLU neural networks with width W and depth L, when the error is measured in the Lp([0,1]d) norm. This problem has been studied by several recent works, which obtained the approximation rate O((WL)2s/d) up to logarithmic factors when p=q=, and the rate O(L2s/d) for networks with fixed width when the Sobolev embedding condition 1/q1/p<s/d holds. We generalize these results by showing that the rate O((WL)2s/d) indeed holds under the Sobolev embedding condition. It is known that this rate is optimal up to logarithmic factors. The key tool in our proof is a novel encoding of sparse vectors by using deep ReLU neural networks with varied width and depth, which may be of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信