{"title":"基于深度ReLU神经网络的Sobolev和Besov函数的最优逼近","authors":"Yunfei Yang","doi":"10.1016/j.acha.2025.101797","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the problem of how efficiently functions in the Sobolev spaces <span><math><msup><mrow><mi>W</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> and Besov spaces <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>r</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> can be approximated by deep ReLU neural networks with width <em>W</em> and depth <em>L</em>, when the error is measured in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> norm. This problem has been studied by several recent works, which obtained the approximation rate <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><mi>W</mi><mi>L</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>2</mn><mi>s</mi><mo>/</mo><mi>d</mi></mrow></msup><mo>)</mo></math></span> up to logarithmic factors when <span><math><mi>p</mi><mo>=</mo><mi>q</mi><mo>=</mo><mo>∞</mo></math></span>, and the rate <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>−</mo><mn>2</mn><mi>s</mi><mo>/</mo><mi>d</mi></mrow></msup><mo>)</mo></math></span> for networks with fixed width when the Sobolev embedding condition <span><math><mn>1</mn><mo>/</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>/</mo><mi>p</mi><mo><</mo><mi>s</mi><mo>/</mo><mi>d</mi></math></span> holds. We generalize these results by showing that the rate <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><mi>W</mi><mi>L</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>2</mn><mi>s</mi><mo>/</mo><mi>d</mi></mrow></msup><mo>)</mo></math></span> indeed holds under the Sobolev embedding condition. It is known that this rate is optimal up to logarithmic factors. The key tool in our proof is a novel encoding of sparse vectors by using deep ReLU neural networks with varied width and depth, which may be of independent interest.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"79 ","pages":"Article 101797"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the optimal approximation of Sobolev and Besov functions using deep ReLU neural networks\",\"authors\":\"Yunfei Yang\",\"doi\":\"10.1016/j.acha.2025.101797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper studies the problem of how efficiently functions in the Sobolev spaces <span><math><msup><mrow><mi>W</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> and Besov spaces <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>r</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> can be approximated by deep ReLU neural networks with width <em>W</em> and depth <em>L</em>, when the error is measured in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> norm. This problem has been studied by several recent works, which obtained the approximation rate <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><mi>W</mi><mi>L</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>2</mn><mi>s</mi><mo>/</mo><mi>d</mi></mrow></msup><mo>)</mo></math></span> up to logarithmic factors when <span><math><mi>p</mi><mo>=</mo><mi>q</mi><mo>=</mo><mo>∞</mo></math></span>, and the rate <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>−</mo><mn>2</mn><mi>s</mi><mo>/</mo><mi>d</mi></mrow></msup><mo>)</mo></math></span> for networks with fixed width when the Sobolev embedding condition <span><math><mn>1</mn><mo>/</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>/</mo><mi>p</mi><mo><</mo><mi>s</mi><mo>/</mo><mi>d</mi></math></span> holds. We generalize these results by showing that the rate <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><mi>W</mi><mi>L</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>2</mn><mi>s</mi><mo>/</mo><mi>d</mi></mrow></msup><mo>)</mo></math></span> indeed holds under the Sobolev embedding condition. It is known that this rate is optimal up to logarithmic factors. The key tool in our proof is a novel encoding of sparse vectors by using deep ReLU neural networks with varied width and depth, which may be of independent interest.</div></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"79 \",\"pages\":\"Article 101797\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S106352032500051X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S106352032500051X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On the optimal approximation of Sobolev and Besov functions using deep ReLU neural networks
This paper studies the problem of how efficiently functions in the Sobolev spaces and Besov spaces can be approximated by deep ReLU neural networks with width W and depth L, when the error is measured in the norm. This problem has been studied by several recent works, which obtained the approximation rate up to logarithmic factors when , and the rate for networks with fixed width when the Sobolev embedding condition holds. We generalize these results by showing that the rate indeed holds under the Sobolev embedding condition. It is known that this rate is optimal up to logarithmic factors. The key tool in our proof is a novel encoding of sparse vectors by using deep ReLU neural networks with varied width and depth, which may be of independent interest.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.