基于多尺度融合和语义增强的激光雷达里程测量方法

IF 5.2 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Yibin Ye , Yang Ren , Yiming Fan , Yiyou Liang , Hui Zeng
{"title":"基于多尺度融合和语义增强的激光雷达里程测量方法","authors":"Yibin Ye ,&nbsp;Yang Ren ,&nbsp;Yiming Fan ,&nbsp;Yiyou Liang ,&nbsp;Hui Zeng","doi":"10.1016/j.robot.2025.105093","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose an end-to-end deep learning-based LiDAR odometry framework addressing key challenges such as point cloud information loss, density variability, and dynamic scene uncertainty. By directly using raw point clouds, our method avoids dimensionality reduction loss and introduces a light-weight geometrically adaptive convolution to improve feature extraction based on local geometric structures. Additionally, a multi-scale fusion and semantic enhancement strategy is employed to incorporate semantic context and optimize pose estimation from coarse to fine. Experimental results on the KITTI dataset show that our approach is competitive with existing methods in accuracy and robustness.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"194 ","pages":"Article 105093"},"PeriodicalIF":5.2000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LiDAR odometry method based on multi-scale fusion and semantic enhancement\",\"authors\":\"Yibin Ye ,&nbsp;Yang Ren ,&nbsp;Yiming Fan ,&nbsp;Yiyou Liang ,&nbsp;Hui Zeng\",\"doi\":\"10.1016/j.robot.2025.105093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we propose an end-to-end deep learning-based LiDAR odometry framework addressing key challenges such as point cloud information loss, density variability, and dynamic scene uncertainty. By directly using raw point clouds, our method avoids dimensionality reduction loss and introduces a light-weight geometrically adaptive convolution to improve feature extraction based on local geometric structures. Additionally, a multi-scale fusion and semantic enhancement strategy is employed to incorporate semantic context and optimize pose estimation from coarse to fine. Experimental results on the KITTI dataset show that our approach is competitive with existing methods in accuracy and robustness.</div></div>\",\"PeriodicalId\":49592,\"journal\":{\"name\":\"Robotics and Autonomous Systems\",\"volume\":\"194 \",\"pages\":\"Article 105093\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics and Autonomous Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921889025001903\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889025001903","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一个基于端到端深度学习的激光雷达里程测量框架,解决了点云信息丢失、密度可变性和动态场景不确定性等关键挑战。通过直接使用原始点云,我们的方法避免了降维损失,并引入了轻量级的几何自适应卷积来改进基于局部几何结构的特征提取。此外,采用多尺度融合和语义增强策略,融合语义上下文,从粗到精优化姿态估计。在KITTI数据集上的实验结果表明,我们的方法在准确性和鲁棒性方面与现有方法具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LiDAR odometry method based on multi-scale fusion and semantic enhancement
In this paper, we propose an end-to-end deep learning-based LiDAR odometry framework addressing key challenges such as point cloud information loss, density variability, and dynamic scene uncertainty. By directly using raw point clouds, our method avoids dimensionality reduction loss and introduces a light-weight geometrically adaptive convolution to improve feature extraction based on local geometric structures. Additionally, a multi-scale fusion and semantic enhancement strategy is employed to incorporate semantic context and optimize pose estimation from coarse to fine. Experimental results on the KITTI dataset show that our approach is competitive with existing methods in accuracy and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Robotics and Autonomous Systems
Robotics and Autonomous Systems 工程技术-机器人学
CiteScore
9.00
自引率
7.00%
发文量
164
审稿时长
4.5 months
期刊介绍: Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems. Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信