探测疏水通道内的优势基序产生含恶二唑的二芳基嘧啶衍生物作为有效的HIV-1非核苷类逆转录酶抑制剂。

IF 6.8 1区 医学 Q1 CHEMISTRY, MEDICINAL
Tao Zhang, Yue Yang, Xin Li, Fabao Zhao, Zongji Zhuo, Le Wang, Wenbo Zhang, Erik De Clercq, Christophe Pannecouque*, Peng Zhan*, Dongwei Kang* and Xinyong Liu*, 
{"title":"探测疏水通道内的优势基序产生含恶二唑的二芳基嘧啶衍生物作为有效的HIV-1非核苷类逆转录酶抑制剂。","authors":"Tao Zhang,&nbsp;Yue Yang,&nbsp;Xin Li,&nbsp;Fabao Zhao,&nbsp;Zongji Zhuo,&nbsp;Le Wang,&nbsp;Wenbo Zhang,&nbsp;Erik De Clercq,&nbsp;Christophe Pannecouque*,&nbsp;Peng Zhan*,&nbsp;Dongwei Kang* and Xinyong Liu*,&nbsp;","doi":"10.1021/acs.jmedchem.5c01102","DOIUrl":null,"url":null,"abstract":"<p >To develop effective non-nucleoside reverse transcriptase inhibitors (NNRTIs) with improved antidrug resistance profiles and drug-like properties, a series of novel diarylpyrimidine derivatives targeting the hydrophobic domain of the NNRTI-binding pocket was strategically designed, synthesized, and evaluated. Following structural optimization, <b>18e</b> (EC<sub>50</sub> = 5.06–54.0 nM) emerged as the most potent inhibitor against wild-type and NNRTI-resistant strains, comparable to ETR (EC<sub>50</sub> = 3.79–51.8 nM). In particular, for Y188L and RES056 mutant strains, <b>18e</b> (EC<sub>50(Y188L)</sub> = 24.2 nM, RF = 4.79/EC<sub>50(RES056)</sub> = 54.0 nM, RF = 10.7) showed improved antiresistance profiles versus ETR (EC<sub>50(Y188L)</sub> = 23.4 nM, RF = 6.18/EC<sub>50(RES056)</sub> = 51.8 nM, RF = 13.7). Molecular simulation studies indicated that the 1,3,4-oxadiazolylpyridine motif was essential for binding to reverse transcriptase. Moreover, <b>18e</b> exhibited promising pharmacokinetic properties (<i>T</i><sub>1/2</sub> = 2.35 h, <i>F</i> = 14.4%) and safety (LD<sub>50</sub> &lt; 2000 mg/kg), positioning it as a promising anti-HIV-1 drug candidate.</p>","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"68 15","pages":"16197–16211"},"PeriodicalIF":6.8000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing the Dominant Motifs within the Hydrophobic Channel Yields Oxadiazole-Containing Diarylpyrimidine Derivatives as Potent HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors\",\"authors\":\"Tao Zhang,&nbsp;Yue Yang,&nbsp;Xin Li,&nbsp;Fabao Zhao,&nbsp;Zongji Zhuo,&nbsp;Le Wang,&nbsp;Wenbo Zhang,&nbsp;Erik De Clercq,&nbsp;Christophe Pannecouque*,&nbsp;Peng Zhan*,&nbsp;Dongwei Kang* and Xinyong Liu*,&nbsp;\",\"doi\":\"10.1021/acs.jmedchem.5c01102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >To develop effective non-nucleoside reverse transcriptase inhibitors (NNRTIs) with improved antidrug resistance profiles and drug-like properties, a series of novel diarylpyrimidine derivatives targeting the hydrophobic domain of the NNRTI-binding pocket was strategically designed, synthesized, and evaluated. Following structural optimization, <b>18e</b> (EC<sub>50</sub> = 5.06–54.0 nM) emerged as the most potent inhibitor against wild-type and NNRTI-resistant strains, comparable to ETR (EC<sub>50</sub> = 3.79–51.8 nM). In particular, for Y188L and RES056 mutant strains, <b>18e</b> (EC<sub>50(Y188L)</sub> = 24.2 nM, RF = 4.79/EC<sub>50(RES056)</sub> = 54.0 nM, RF = 10.7) showed improved antiresistance profiles versus ETR (EC<sub>50(Y188L)</sub> = 23.4 nM, RF = 6.18/EC<sub>50(RES056)</sub> = 51.8 nM, RF = 13.7). Molecular simulation studies indicated that the 1,3,4-oxadiazolylpyridine motif was essential for binding to reverse transcriptase. Moreover, <b>18e</b> exhibited promising pharmacokinetic properties (<i>T</i><sub>1/2</sub> = 2.35 h, <i>F</i> = 14.4%) and safety (LD<sub>50</sub> &lt; 2000 mg/kg), positioning it as a promising anti-HIV-1 drug candidate.</p>\",\"PeriodicalId\":46,\"journal\":{\"name\":\"Journal of Medicinal Chemistry\",\"volume\":\"68 15\",\"pages\":\"16197–16211\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jmedchem.5c01102\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jmedchem.5c01102","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

为了开发有效的非核苷类逆转录酶抑制剂(NNRTIs),并改善其耐药谱和药物样特性,我们设计、合成并评估了一系列针对nnrti结合口袋疏水结构域的新型二芳基嘧啶衍生物。经结构优化,18e (EC50 = 5.06 ~ 54.0 nM)与ETR (EC50 = 3.79 ~ 51.8 nM)相比,对野生型和nnrti耐药菌株的抑制作用最强。特别是在Y188L和RES056突变株中,18e (EC50(Y188L) = 24.2 nM, RF = 4.79/EC50(RES056) = 54.0 nM, RF = 10.7)的抗抗性谱优于ETR (EC50(Y188L) = 23.4 nM, RF = 6.18/EC50(RES056) = 51.8 nM, RF = 13.7)。分子模拟研究表明,1,3,4-恶二唑基吡啶基序是与逆转录酶结合所必需的。此外,18e具有良好的药代动力学特性(T1/2 = 2.35 h, F = 14.4%)和安全性(LD50 < 2000 mg/kg),是一种有前景的抗hiv -1候选药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Probing the Dominant Motifs within the Hydrophobic Channel Yields Oxadiazole-Containing Diarylpyrimidine Derivatives as Potent HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors

Probing the Dominant Motifs within the Hydrophobic Channel Yields Oxadiazole-Containing Diarylpyrimidine Derivatives as Potent HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors

To develop effective non-nucleoside reverse transcriptase inhibitors (NNRTIs) with improved antidrug resistance profiles and drug-like properties, a series of novel diarylpyrimidine derivatives targeting the hydrophobic domain of the NNRTI-binding pocket was strategically designed, synthesized, and evaluated. Following structural optimization, 18e (EC50 = 5.06–54.0 nM) emerged as the most potent inhibitor against wild-type and NNRTI-resistant strains, comparable to ETR (EC50 = 3.79–51.8 nM). In particular, for Y188L and RES056 mutant strains, 18e (EC50(Y188L) = 24.2 nM, RF = 4.79/EC50(RES056) = 54.0 nM, RF = 10.7) showed improved antiresistance profiles versus ETR (EC50(Y188L) = 23.4 nM, RF = 6.18/EC50(RES056) = 51.8 nM, RF = 13.7). Molecular simulation studies indicated that the 1,3,4-oxadiazolylpyridine motif was essential for binding to reverse transcriptase. Moreover, 18e exhibited promising pharmacokinetic properties (T1/2 = 2.35 h, F = 14.4%) and safety (LD50 < 2000 mg/kg), positioning it as a promising anti-HIV-1 drug candidate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medicinal Chemistry
Journal of Medicinal Chemistry 医学-医药化学
CiteScore
4.00
自引率
11.00%
发文量
804
审稿时长
1.9 months
期刊介绍: The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents. The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信