基于硅纳米柱的一次性柔性超声贴片

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Dong-Hyun Kang, Seonghun Cho, Hae Youn Kim, Shinyong Shim, Dong Hun Kim, Baren Jeong, Yoon Seong Lee, Eun-Ah Park, Whal Lee, Hyungmin Kim, Butrus T. Khuri-Yakub, Maesoon Im, Jae-Woong Jeong, Byung Chul Lee
{"title":"基于硅纳米柱的一次性柔性超声贴片","authors":"Dong-Hyun Kang, Seonghun Cho, Hae Youn Kim, Shinyong Shim, Dong Hun Kim, Baren Jeong, Yoon Seong Lee, Eun-Ah Park, Whal Lee, Hyungmin Kim, Butrus T. Khuri-Yakub, Maesoon Im, Jae-Woong Jeong, Byung Chul Lee","doi":"10.1038/s41467-025-61903-x","DOIUrl":null,"url":null,"abstract":"<p>Traditional wearable ultrasound devices pose challenges concerning the rigidity and environmental impact of lead-based piezoelectric materials. This study proposes a silicon nanocolumn capacitive micromachined ultrasonic transducer (snCMUT) array for real-time wearable ultrasound imaging in disposable patches. Using a lead-free design, snCMUT incorporates silicon nanocolumns to address existing issues and achieves high transmission efficiency (220 kPa/V), flexibility, and low power consumption. The specialized structure of snCMUT enhances displacement efficiency, enabling high-resolution imaging while maintaining a thin, flexible form factor (~900 μm). Phantom imaging demonstrates its superior performance, with high axial and lateral resolutions (0.52 and 0.55 mm) and depth penetration (~70 mm) at low voltage (8.9 V<sub>PP</sub>). Upon successful application to monitor both sides of the human carotid arteries, snCMUT offers clear ultrasound images and continuous blood pressure waveform monitoring. This proposed innovation presents significant potential for continuous medical imaging and cardiovascular health assessment, addressing environmental concerns and reducing manufacturing costs (&lt;$20).</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"109 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silicon nanocolumn-based disposable and flexible ultrasound patches\",\"authors\":\"Dong-Hyun Kang, Seonghun Cho, Hae Youn Kim, Shinyong Shim, Dong Hun Kim, Baren Jeong, Yoon Seong Lee, Eun-Ah Park, Whal Lee, Hyungmin Kim, Butrus T. Khuri-Yakub, Maesoon Im, Jae-Woong Jeong, Byung Chul Lee\",\"doi\":\"10.1038/s41467-025-61903-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Traditional wearable ultrasound devices pose challenges concerning the rigidity and environmental impact of lead-based piezoelectric materials. This study proposes a silicon nanocolumn capacitive micromachined ultrasonic transducer (snCMUT) array for real-time wearable ultrasound imaging in disposable patches. Using a lead-free design, snCMUT incorporates silicon nanocolumns to address existing issues and achieves high transmission efficiency (220 kPa/V), flexibility, and low power consumption. The specialized structure of snCMUT enhances displacement efficiency, enabling high-resolution imaging while maintaining a thin, flexible form factor (~900 μm). Phantom imaging demonstrates its superior performance, with high axial and lateral resolutions (0.52 and 0.55 mm) and depth penetration (~70 mm) at low voltage (8.9 V<sub>PP</sub>). Upon successful application to monitor both sides of the human carotid arteries, snCMUT offers clear ultrasound images and continuous blood pressure waveform monitoring. This proposed innovation presents significant potential for continuous medical imaging and cardiovascular health assessment, addressing environmental concerns and reducing manufacturing costs (&lt;$20).</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61903-x\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61903-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

传统的可穿戴超声设备面临着铅基压电材料刚性和环境影响的挑战。本研究提出了一种硅纳米柱电容式微机械超声换能器(snCMUT)阵列,用于一次性贴片的实时可穿戴超声成像。snCMUT采用无铅设计,结合硅纳米柱来解决现有问题,并实现高传输效率(220 kPa/V),灵活性和低功耗。snCMUT的特殊结构提高了位移效率,实现了高分辨率成像,同时保持了薄而灵活的外形尺寸(~900 μm)。幻影成像显示了其优越的性能,具有高轴向和横向分辨率(0.52和0.55 mm)和低电压(8.9 VPP)下的深度穿透(~70 mm)。在成功应用于监测人颈动脉两侧后,snCMUT提供清晰的超声图像和连续的血压波形监测。这项提议的创新在连续医学成像和心血管健康评估、解决环境问题和降低制造成本方面具有巨大潜力(20美元)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Silicon nanocolumn-based disposable and flexible ultrasound patches

Silicon nanocolumn-based disposable and flexible ultrasound patches

Traditional wearable ultrasound devices pose challenges concerning the rigidity and environmental impact of lead-based piezoelectric materials. This study proposes a silicon nanocolumn capacitive micromachined ultrasonic transducer (snCMUT) array for real-time wearable ultrasound imaging in disposable patches. Using a lead-free design, snCMUT incorporates silicon nanocolumns to address existing issues and achieves high transmission efficiency (220 kPa/V), flexibility, and low power consumption. The specialized structure of snCMUT enhances displacement efficiency, enabling high-resolution imaging while maintaining a thin, flexible form factor (~900 μm). Phantom imaging demonstrates its superior performance, with high axial and lateral resolutions (0.52 and 0.55 mm) and depth penetration (~70 mm) at low voltage (8.9 VPP). Upon successful application to monitor both sides of the human carotid arteries, snCMUT offers clear ultrasound images and continuous blood pressure waveform monitoring. This proposed innovation presents significant potential for continuous medical imaging and cardiovascular health assessment, addressing environmental concerns and reducing manufacturing costs (<$20).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信