V960月球系统的VLT/ERIS观测:由引力不稳定形成的尘埃嵌入的次恒星物体?

Anuroop Dasgupta, Alice Zurlo, Philipp Weber, Francesco Maio, Lucas A. Cieza, Davide Fedele, Antonio Garufi, James Miley, Prashant Pathak, Sebastián Pérez and Veronica Roccatagliata
{"title":"V960月球系统的VLT/ERIS观测:由引力不稳定形成的尘埃嵌入的次恒星物体?","authors":"Anuroop Dasgupta, Alice Zurlo, Philipp Weber, Francesco Maio, Lucas A. Cieza, Davide Fedele, Antonio Garufi, James Miley, Prashant Pathak, Sebastián Pérez and Veronica Roccatagliata","doi":"10.3847/2041-8213/ade996","DOIUrl":null,"url":null,"abstract":"V960 Mon is an FU Orionis object that shows strong evidence of a gravitationally unstable spiral arm that is fragmenting into several dust clumps. We report the discovery of a new substellar companion candidate around this young star, identified in high-contrast -band imaging with Very Large Telescope/Enhanced Resolution Imager and Spectrograph. The object is detected at a projected separation of 0 898 ± 0 01 with a contrast of (8.39 ± 0.07) × 10−3. The candidate lies close to the clumps previously detected in the submillimeter (at 1.3 mm) and is co-located with extended polarized IR signal from scattered stellar irradiation, suggesting it is deeply embedded. The object is undetected in the SPHERE H-band total intensity, placing an upper mass limit of ∼38 MJup from the contrast curve. Using evolutionary models at an assumed age of 1 Myr, we estimate a mass of ∼660 MJup from the L′ brightness; however, this value likely includes a significant contribution from a disk around the companion. The discrepancy between near- and mid-infrared results again suggests the source is deeply embedded in dust. This candidate may represent an actively accreting, disk-bearing substellar object in a young, gravitationally unstable environment.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VLT/ERIS Observations of the V960 Mon System: A Dust-embedded Substellar Object Formed by Gravitational Instability?\",\"authors\":\"Anuroop Dasgupta, Alice Zurlo, Philipp Weber, Francesco Maio, Lucas A. Cieza, Davide Fedele, Antonio Garufi, James Miley, Prashant Pathak, Sebastián Pérez and Veronica Roccatagliata\",\"doi\":\"10.3847/2041-8213/ade996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"V960 Mon is an FU Orionis object that shows strong evidence of a gravitationally unstable spiral arm that is fragmenting into several dust clumps. We report the discovery of a new substellar companion candidate around this young star, identified in high-contrast -band imaging with Very Large Telescope/Enhanced Resolution Imager and Spectrograph. The object is detected at a projected separation of 0 898 ± 0 01 with a contrast of (8.39 ± 0.07) × 10−3. The candidate lies close to the clumps previously detected in the submillimeter (at 1.3 mm) and is co-located with extended polarized IR signal from scattered stellar irradiation, suggesting it is deeply embedded. The object is undetected in the SPHERE H-band total intensity, placing an upper mass limit of ∼38 MJup from the contrast curve. Using evolutionary models at an assumed age of 1 Myr, we estimate a mass of ∼660 MJup from the L′ brightness; however, this value likely includes a significant contribution from a disk around the companion. The discrepancy between near- and mid-infrared results again suggests the source is deeply embedded in dust. This candidate may represent an actively accreting, disk-bearing substellar object in a young, gravitationally unstable environment.\",\"PeriodicalId\":501814,\"journal\":{\"name\":\"The Astrophysical Journal Letters\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/ade996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ade996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

月亮V960是猎户座FU的一颗天体,有强有力的证据表明,它有一个引力不稳定的螺旋臂,它正在分裂成几个尘埃团。我们报告在这颗年轻恒星周围发现了一颗新的伴星,它是用甚大望远镜/增强分辨率成像仪和光谱仪在高对比度波段成像中发现的。在投影距离为0 898±0 01时检测到目标,对比度为(8.39±0.07)× 10−3。这个候选者靠近先前在亚毫米(1.3毫米)探测到的团块,并且与来自散射恒星辐射的扩展偏振红外信号位于同一位置,这表明它是深嵌的。该物体在SPHERE h波段的总强度中未被检测到,在对比曲线上的质量上限为~ 38 MJup。使用假设年龄为1 Myr的进化模型,我们从L '亮度估计出质量为~ 660 MJup;然而,这个值可能包括伴星周围的一个磁盘的重要贡献。近红外和中红外结果之间的差异再次表明,该源深埋在尘埃中。这个候选者可能代表了一个年轻的、重力不稳定的环境中积极吸积的、带盘的恒星下天体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VLT/ERIS Observations of the V960 Mon System: A Dust-embedded Substellar Object Formed by Gravitational Instability?
V960 Mon is an FU Orionis object that shows strong evidence of a gravitationally unstable spiral arm that is fragmenting into several dust clumps. We report the discovery of a new substellar companion candidate around this young star, identified in high-contrast -band imaging with Very Large Telescope/Enhanced Resolution Imager and Spectrograph. The object is detected at a projected separation of 0 898 ± 0 01 with a contrast of (8.39 ± 0.07) × 10−3. The candidate lies close to the clumps previously detected in the submillimeter (at 1.3 mm) and is co-located with extended polarized IR signal from scattered stellar irradiation, suggesting it is deeply embedded. The object is undetected in the SPHERE H-band total intensity, placing an upper mass limit of ∼38 MJup from the contrast curve. Using evolutionary models at an assumed age of 1 Myr, we estimate a mass of ∼660 MJup from the L′ brightness; however, this value likely includes a significant contribution from a disk around the companion. The discrepancy between near- and mid-infrared results again suggests the source is deeply embedded in dust. This candidate may represent an actively accreting, disk-bearing substellar object in a young, gravitationally unstable environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信