Qingxiang Wang, Zhaoxuan Niu, Wanli Cheng, Ming Yang, Jie Yan, Jiqing Lu, Haijiao Yu, Yiying Yue, Yen Wei, Dong Wang, Shichao Zhang, Bin Ding, Guangping Han
{"title":"可持续生物质基过滤器,高效过滤PM0.3","authors":"Qingxiang Wang, Zhaoxuan Niu, Wanli Cheng, Ming Yang, Jie Yan, Jiqing Lu, Haijiao Yu, Yiying Yue, Yen Wei, Dong Wang, Shichao Zhang, Bin Ding, Guangping Han","doi":"10.1038/s41467-025-61863-2","DOIUrl":null,"url":null,"abstract":"<p>Biomass materials have been widely used in various industries to achieve a carbon-neutral and sustainable society. Here, we show a heterogeneous corn-based precursor strategy that transforms low-value agricultural waste into structural air filters composed of alternating microfibers (2.61 ± 1.11 µm) with grooved surface and nanofibers (0.29 ± 0.18 µm). Utilizing a green solute-solvent system of zein derived from corn and cellulose extracted from corn straw, the process ensures sustainability across raw material sources, fabrication, filtration, and end-of-life degradation. By tailoring relative humidity and incorporating cellulose, an incomplete nonsolvent-induced phase separation is triggered, leading to a corn-based dual-network filter with high filtration performance (>99.99% PM<sub>0.3</sub> removal) and low pressure drop (45 Pa). The life cycle assessment demonstrates that the corn-based filter results in lower carbon emissions and environmental impacts than petroleum-based filters. This work provides a promising pathway toward the development of sustainable and disposable filtration materials.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"109 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable biomass-based filter for high-efficiency PM0.3 filtration\",\"authors\":\"Qingxiang Wang, Zhaoxuan Niu, Wanli Cheng, Ming Yang, Jie Yan, Jiqing Lu, Haijiao Yu, Yiying Yue, Yen Wei, Dong Wang, Shichao Zhang, Bin Ding, Guangping Han\",\"doi\":\"10.1038/s41467-025-61863-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biomass materials have been widely used in various industries to achieve a carbon-neutral and sustainable society. Here, we show a heterogeneous corn-based precursor strategy that transforms low-value agricultural waste into structural air filters composed of alternating microfibers (2.61 ± 1.11 µm) with grooved surface and nanofibers (0.29 ± 0.18 µm). Utilizing a green solute-solvent system of zein derived from corn and cellulose extracted from corn straw, the process ensures sustainability across raw material sources, fabrication, filtration, and end-of-life degradation. By tailoring relative humidity and incorporating cellulose, an incomplete nonsolvent-induced phase separation is triggered, leading to a corn-based dual-network filter with high filtration performance (>99.99% PM<sub>0.3</sub> removal) and low pressure drop (45 Pa). The life cycle assessment demonstrates that the corn-based filter results in lower carbon emissions and environmental impacts than petroleum-based filters. This work provides a promising pathway toward the development of sustainable and disposable filtration materials.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61863-2\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61863-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Sustainable biomass-based filter for high-efficiency PM0.3 filtration
Biomass materials have been widely used in various industries to achieve a carbon-neutral and sustainable society. Here, we show a heterogeneous corn-based precursor strategy that transforms low-value agricultural waste into structural air filters composed of alternating microfibers (2.61 ± 1.11 µm) with grooved surface and nanofibers (0.29 ± 0.18 µm). Utilizing a green solute-solvent system of zein derived from corn and cellulose extracted from corn straw, the process ensures sustainability across raw material sources, fabrication, filtration, and end-of-life degradation. By tailoring relative humidity and incorporating cellulose, an incomplete nonsolvent-induced phase separation is triggered, leading to a corn-based dual-network filter with high filtration performance (>99.99% PM0.3 removal) and low pressure drop (45 Pa). The life cycle assessment demonstrates that the corn-based filter results in lower carbon emissions and environmental impacts than petroleum-based filters. This work provides a promising pathway toward the development of sustainable and disposable filtration materials.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.