使用crispr相关转座酶对抗肠杆菌科肠道病原体的精确毒力失活

IF 26.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Carlotta Ronda, Tyler Perdue, Logan Schwanz, Diego Rivera Gelsinger, Leonie Brockmann, Andrew Kaufman, Yiming Huang, Samuel H. Sternberg, Harris H. Wang
{"title":"使用crispr相关转座酶对抗肠杆菌科肠道病原体的精确毒力失活","authors":"Carlotta Ronda, Tyler Perdue, Logan Schwanz, Diego Rivera Gelsinger, Leonie Brockmann, Andrew Kaufman, Yiming Huang, Samuel H. Sternberg, Harris H. Wang","doi":"10.1038/s41551-025-01453-1","DOIUrl":null,"url":null,"abstract":"<p>Targeted gene manipulation in a complex microbial community is an enabling technology for precise microbiome editing. Here we introduce BACTRINS, an in situ microbiome engineering platform designed for efficient and precise genomic insertion of a desired payload and simultaneous knockout of target genes. This system leverages conjugation-mediated delivery of CRISPR-associated transposases to achieve RNA-guided genomic integration, allowing precise insertion of a therapeutic payload while neutralizing pathogen virulence without causing cell death. When applied against an Enterobacteriaceae Shiga toxin-producing pathogen in the gut, this system delivers a CRISPR-associated transposase by bacterial conjugation for site-specific inactivation of the Shiga toxin gene and integration of a nanobody therapeutic payload to disrupt pathogen attachment. A single dose of this therapy results in high-efficiency Shiga gene inactivation and improved survival in a murine infection model of Shiga-producing pathogen. This work establishes a new type of live bacterial therapeutic capable of reducing gut infections by transforming toxigenic pathogens into commensal protectors.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"6 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precise virulence inactivation using a CRISPR-associated transposase for combating Enterobacteriaceae gut pathogens\",\"authors\":\"Carlotta Ronda, Tyler Perdue, Logan Schwanz, Diego Rivera Gelsinger, Leonie Brockmann, Andrew Kaufman, Yiming Huang, Samuel H. Sternberg, Harris H. Wang\",\"doi\":\"10.1038/s41551-025-01453-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Targeted gene manipulation in a complex microbial community is an enabling technology for precise microbiome editing. Here we introduce BACTRINS, an in situ microbiome engineering platform designed for efficient and precise genomic insertion of a desired payload and simultaneous knockout of target genes. This system leverages conjugation-mediated delivery of CRISPR-associated transposases to achieve RNA-guided genomic integration, allowing precise insertion of a therapeutic payload while neutralizing pathogen virulence without causing cell death. When applied against an Enterobacteriaceae Shiga toxin-producing pathogen in the gut, this system delivers a CRISPR-associated transposase by bacterial conjugation for site-specific inactivation of the Shiga toxin gene and integration of a nanobody therapeutic payload to disrupt pathogen attachment. A single dose of this therapy results in high-efficiency Shiga gene inactivation and improved survival in a murine infection model of Shiga-producing pathogen. This work establishes a new type of live bacterial therapeutic capable of reducing gut infections by transforming toxigenic pathogens into commensal protectors.</p>\",\"PeriodicalId\":19063,\"journal\":{\"name\":\"Nature Biomedical Engineering\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41551-025-01453-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01453-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

在复杂的微生物群落中进行靶向基因操作是精确编辑微生物组的一种使能技术。在这里,我们介绍BACTRINS,这是一个原位微生物组工程平台,旨在高效、精确地插入所需的有效载荷并同时敲除目标基因。该系统利用结合介导的crispr相关转座传递来实现rna引导的基因组整合,允许精确插入治疗有效载荷,同时中和病原体毒力而不导致细胞死亡。当应用于肠道中产生志贺毒素的肠杆菌科病原体时,该系统通过细菌偶联提供crispr相关转座酶,用于志贺毒素基因的位点特异性失活和纳米体治疗有效载荷的整合,以破坏病原体的附着。单剂量的这种治疗结果是高效的志贺基因失活,并提高了小鼠感染模型中的志贺产生病原体的存活率。这项工作建立了一种新型的活细菌治疗,能够通过将产毒病原体转化为共生保护剂来减少肠道感染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Precise virulence inactivation using a CRISPR-associated transposase for combating Enterobacteriaceae gut pathogens

Precise virulence inactivation using a CRISPR-associated transposase for combating Enterobacteriaceae gut pathogens

Targeted gene manipulation in a complex microbial community is an enabling technology for precise microbiome editing. Here we introduce BACTRINS, an in situ microbiome engineering platform designed for efficient and precise genomic insertion of a desired payload and simultaneous knockout of target genes. This system leverages conjugation-mediated delivery of CRISPR-associated transposases to achieve RNA-guided genomic integration, allowing precise insertion of a therapeutic payload while neutralizing pathogen virulence without causing cell death. When applied against an Enterobacteriaceae Shiga toxin-producing pathogen in the gut, this system delivers a CRISPR-associated transposase by bacterial conjugation for site-specific inactivation of the Shiga toxin gene and integration of a nanobody therapeutic payload to disrupt pathogen attachment. A single dose of this therapy results in high-efficiency Shiga gene inactivation and improved survival in a murine infection model of Shiga-producing pathogen. This work establishes a new type of live bacterial therapeutic capable of reducing gut infections by transforming toxigenic pathogens into commensal protectors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Biomedical Engineering
Nature Biomedical Engineering Medicine-Medicine (miscellaneous)
CiteScore
45.30
自引率
1.10%
发文量
138
期刊介绍: Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信