Carlotta Ronda, Tyler Perdue, Logan Schwanz, Diego Rivera Gelsinger, Leonie Brockmann, Andrew Kaufman, Yiming Huang, Samuel H. Sternberg, Harris H. Wang
{"title":"使用crispr相关转座酶对抗肠杆菌科肠道病原体的精确毒力失活","authors":"Carlotta Ronda, Tyler Perdue, Logan Schwanz, Diego Rivera Gelsinger, Leonie Brockmann, Andrew Kaufman, Yiming Huang, Samuel H. Sternberg, Harris H. Wang","doi":"10.1038/s41551-025-01453-1","DOIUrl":null,"url":null,"abstract":"<p>Targeted gene manipulation in a complex microbial community is an enabling technology for precise microbiome editing. Here we introduce BACTRINS, an in situ microbiome engineering platform designed for efficient and precise genomic insertion of a desired payload and simultaneous knockout of target genes. This system leverages conjugation-mediated delivery of CRISPR-associated transposases to achieve RNA-guided genomic integration, allowing precise insertion of a therapeutic payload while neutralizing pathogen virulence without causing cell death. When applied against an Enterobacteriaceae Shiga toxin-producing pathogen in the gut, this system delivers a CRISPR-associated transposase by bacterial conjugation for site-specific inactivation of the Shiga toxin gene and integration of a nanobody therapeutic payload to disrupt pathogen attachment. A single dose of this therapy results in high-efficiency Shiga gene inactivation and improved survival in a murine infection model of Shiga-producing pathogen. This work establishes a new type of live bacterial therapeutic capable of reducing gut infections by transforming toxigenic pathogens into commensal protectors.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"6 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precise virulence inactivation using a CRISPR-associated transposase for combating Enterobacteriaceae gut pathogens\",\"authors\":\"Carlotta Ronda, Tyler Perdue, Logan Schwanz, Diego Rivera Gelsinger, Leonie Brockmann, Andrew Kaufman, Yiming Huang, Samuel H. Sternberg, Harris H. Wang\",\"doi\":\"10.1038/s41551-025-01453-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Targeted gene manipulation in a complex microbial community is an enabling technology for precise microbiome editing. Here we introduce BACTRINS, an in situ microbiome engineering platform designed for efficient and precise genomic insertion of a desired payload and simultaneous knockout of target genes. This system leverages conjugation-mediated delivery of CRISPR-associated transposases to achieve RNA-guided genomic integration, allowing precise insertion of a therapeutic payload while neutralizing pathogen virulence without causing cell death. When applied against an Enterobacteriaceae Shiga toxin-producing pathogen in the gut, this system delivers a CRISPR-associated transposase by bacterial conjugation for site-specific inactivation of the Shiga toxin gene and integration of a nanobody therapeutic payload to disrupt pathogen attachment. A single dose of this therapy results in high-efficiency Shiga gene inactivation and improved survival in a murine infection model of Shiga-producing pathogen. This work establishes a new type of live bacterial therapeutic capable of reducing gut infections by transforming toxigenic pathogens into commensal protectors.</p>\",\"PeriodicalId\":19063,\"journal\":{\"name\":\"Nature Biomedical Engineering\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41551-025-01453-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01453-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Precise virulence inactivation using a CRISPR-associated transposase for combating Enterobacteriaceae gut pathogens
Targeted gene manipulation in a complex microbial community is an enabling technology for precise microbiome editing. Here we introduce BACTRINS, an in situ microbiome engineering platform designed for efficient and precise genomic insertion of a desired payload and simultaneous knockout of target genes. This system leverages conjugation-mediated delivery of CRISPR-associated transposases to achieve RNA-guided genomic integration, allowing precise insertion of a therapeutic payload while neutralizing pathogen virulence without causing cell death. When applied against an Enterobacteriaceae Shiga toxin-producing pathogen in the gut, this system delivers a CRISPR-associated transposase by bacterial conjugation for site-specific inactivation of the Shiga toxin gene and integration of a nanobody therapeutic payload to disrupt pathogen attachment. A single dose of this therapy results in high-efficiency Shiga gene inactivation and improved survival in a murine infection model of Shiga-producing pathogen. This work establishes a new type of live bacterial therapeutic capable of reducing gut infections by transforming toxigenic pathogens into commensal protectors.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.