{"title":"用于光电化学水分解的半导体/分子复合物杂化光电极的锚定基团调节。","authors":"Xiangyan Chen, Fujun Niu, Tongxiang Ma, Qingyu Li, Shaopeng Wang, Shaohua Shen","doi":"10.1002/smo.20240056","DOIUrl":null,"url":null,"abstract":"<p><p>Rational interface engineering via regulating the anchoring groups between molecular catalysts and light-absorbing semiconductors is essential and emergent to stabilize the semiconductor/molecular complex interaction and facilitate the photocarriers transport, thus realizing highly active and stable photoelectrochemical (PEC) water splitting. In this mini review, following a showcasing of the fundamental details of hybrid PEC systems containing semiconductor photoelectrodes and molecular catalysts for water splitting, the state-of-the-art progress of anchoring group regulation at semiconductor/molecular complex interface for efficient and stable PEC water splitting, as well as its effect on charge transfer kinetics, are comprehensively reviewed. Finally, potential research directions aimed at building high-efficiency hybrid PEC water splitting systems are summarized.</p>","PeriodicalId":520929,"journal":{"name":"Smart molecules : open access","volume":"3 2","pages":"e20240056"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12262012/pdf/","citationCount":"0","resultStr":"{\"title\":\"Anchoring group regulation in semiconductor/molecular complex hybrid photoelectrode for photoelectrochemical water splitting.\",\"authors\":\"Xiangyan Chen, Fujun Niu, Tongxiang Ma, Qingyu Li, Shaopeng Wang, Shaohua Shen\",\"doi\":\"10.1002/smo.20240056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rational interface engineering via regulating the anchoring groups between molecular catalysts and light-absorbing semiconductors is essential and emergent to stabilize the semiconductor/molecular complex interaction and facilitate the photocarriers transport, thus realizing highly active and stable photoelectrochemical (PEC) water splitting. In this mini review, following a showcasing of the fundamental details of hybrid PEC systems containing semiconductor photoelectrodes and molecular catalysts for water splitting, the state-of-the-art progress of anchoring group regulation at semiconductor/molecular complex interface for efficient and stable PEC water splitting, as well as its effect on charge transfer kinetics, are comprehensively reviewed. Finally, potential research directions aimed at building high-efficiency hybrid PEC water splitting systems are summarized.</p>\",\"PeriodicalId\":520929,\"journal\":{\"name\":\"Smart molecules : open access\",\"volume\":\"3 2\",\"pages\":\"e20240056\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12262012/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart molecules : open access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smo.20240056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart molecules : open access","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smo.20240056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Anchoring group regulation in semiconductor/molecular complex hybrid photoelectrode for photoelectrochemical water splitting.
Rational interface engineering via regulating the anchoring groups between molecular catalysts and light-absorbing semiconductors is essential and emergent to stabilize the semiconductor/molecular complex interaction and facilitate the photocarriers transport, thus realizing highly active and stable photoelectrochemical (PEC) water splitting. In this mini review, following a showcasing of the fundamental details of hybrid PEC systems containing semiconductor photoelectrodes and molecular catalysts for water splitting, the state-of-the-art progress of anchoring group regulation at semiconductor/molecular complex interface for efficient and stable PEC water splitting, as well as its effect on charge transfer kinetics, are comprehensively reviewed. Finally, potential research directions aimed at building high-efficiency hybrid PEC water splitting systems are summarized.