骨骼肌干细胞线粒体在肥厚刺激下转移到肌纤维中。

IF 5.1 Q2 CELL BIOLOGY
Jensen Goh, Julia G Williams, Sarah E Ogle, Jai K Joshi, Logan N Scott, Benjamin I Burke, Alex R Keeble, Nicholas T Thomas, Christopher S Fry, Ahmed Ismaeel, John J McCarthy
{"title":"骨骼肌干细胞线粒体在肥厚刺激下转移到肌纤维中。","authors":"Jensen Goh, Julia G Williams, Sarah E Ogle, Jai K Joshi, Logan N Scott, Benjamin I Burke, Alex R Keeble, Nicholas T Thomas, Christopher S Fry, Ahmed Ismaeel, John J McCarthy","doi":"10.1093/function/zqaf031","DOIUrl":null,"url":null,"abstract":"<p><p>The fusion of skeletal muscle stem cell (MuSC) to myofibers during hypertrophy has exclusively focused on the transfer of the MuSC nucleus, leaving the fate of other MuSC organelles, such as mitochondria, largely unexplored. The objective of this study was to determine if MuSCs transfer their mitochondria upon myofiber fusion in response to a hypertrophic stimulus. To achieve this goal, we specifically labeled MuSC mitochondria with Dendra2 fluorescence by crossing the MuSC-specific CreER (Pax7CreER/CreER) mouse with the Rosa26-Dendra2 mouse to generate the Pax7-Dendra2 mouse. To induce the fusion of MuSC to myofibers, Pax7-Dendra2 mice underwent synergist ablation surgery to induce mechanical overload (MOV) of plantaris muscle for 3, 7 and 14 days. To track MuSC proliferation, a mini-osmotic pump was implanted at the time of MOV to continuously deliver EdU. At the designated time, plantaris muscles were excised and processed for immunohistochemistry to quantify Dendra2 + myofibers. There was a progressive increase in Dendra2-positive fibers across the MOV time course. Three distinct patterns or domains of Dendra2 fluorescence within myofibers were identified and designated as newly fused (NF), crescent (CS) or diffuse (DF). From these Dendra2 + domain types, we inferred MuSC fusion dynamics which indicated MuSC fusion occurred prior to mechanical overload day 3 (MOV-3) and preferentially with Type 2A fibers. Quantification of EdU + myonuclei found the majority of early (MOV < 3 days) MuSC fusion was division-independent, while proliferating MuSCs contributed primarily to later fusion events. The results of this study provide the first evidence that MuSC mitochondria are transferred to myofibers upon fusion during hypertrophy while, unexpectedly, revealing a greater complexity in MuSC fusion than previously recognized.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skeletal muscle stem cell mitochondria are transferred to muscle fibers in response to a hypertrophic stimulus.\",\"authors\":\"Jensen Goh, Julia G Williams, Sarah E Ogle, Jai K Joshi, Logan N Scott, Benjamin I Burke, Alex R Keeble, Nicholas T Thomas, Christopher S Fry, Ahmed Ismaeel, John J McCarthy\",\"doi\":\"10.1093/function/zqaf031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The fusion of skeletal muscle stem cell (MuSC) to myofibers during hypertrophy has exclusively focused on the transfer of the MuSC nucleus, leaving the fate of other MuSC organelles, such as mitochondria, largely unexplored. The objective of this study was to determine if MuSCs transfer their mitochondria upon myofiber fusion in response to a hypertrophic stimulus. To achieve this goal, we specifically labeled MuSC mitochondria with Dendra2 fluorescence by crossing the MuSC-specific CreER (Pax7CreER/CreER) mouse with the Rosa26-Dendra2 mouse to generate the Pax7-Dendra2 mouse. To induce the fusion of MuSC to myofibers, Pax7-Dendra2 mice underwent synergist ablation surgery to induce mechanical overload (MOV) of plantaris muscle for 3, 7 and 14 days. To track MuSC proliferation, a mini-osmotic pump was implanted at the time of MOV to continuously deliver EdU. At the designated time, plantaris muscles were excised and processed for immunohistochemistry to quantify Dendra2 + myofibers. There was a progressive increase in Dendra2-positive fibers across the MOV time course. Three distinct patterns or domains of Dendra2 fluorescence within myofibers were identified and designated as newly fused (NF), crescent (CS) or diffuse (DF). From these Dendra2 + domain types, we inferred MuSC fusion dynamics which indicated MuSC fusion occurred prior to mechanical overload day 3 (MOV-3) and preferentially with Type 2A fibers. Quantification of EdU + myonuclei found the majority of early (MOV < 3 days) MuSC fusion was division-independent, while proliferating MuSCs contributed primarily to later fusion events. The results of this study provide the first evidence that MuSC mitochondria are transferred to myofibers upon fusion during hypertrophy while, unexpectedly, revealing a greater complexity in MuSC fusion than previously recognized.</p>\",\"PeriodicalId\":73119,\"journal\":{\"name\":\"Function (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Function (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/function/zqaf031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Function (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/function/zqaf031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肥大过程中骨骼肌干细胞(MuSC)与肌纤维的融合只集中在MuSC核的转移上,而其他MuSC细胞器(如线粒体)的命运在很大程度上是未知的。本研究的目的是确定MuSCs是否在肥厚刺激下将其线粒体转移到肌纤维融合上。为了实现这一目标,我们将MuSC特异性CreER (Pax7CreER/CreER)小鼠与Rosa26-Dendra2小鼠杂交,用Dendra2荧光特异性标记MuSC线粒体,生成Pax7-Dendra2小鼠。为了诱导MuSC与肌纤维的融合,Pax7-Dendra2小鼠进行了增效消融手术,诱导3、7和14天的跖肌机械过载(MOV)。为了跟踪MuSC的增殖,在MOV时植入微渗透泵以持续输送EdU。在指定时间,切除足底肌肉,进行免疫组织化学处理,定量Dendra2 +肌纤维。在整个MOV时间过程中,dendra2阳性纤维逐渐增加。在肌纤维中确定了树突2荧光的三种不同模式或区域,并将其命名为新融合(NF),新月(CS)或弥漫(DF)。从这些Dendra2 +结构域类型中,我们推断出MuSC融合动力学,表明MuSC融合发生在机械过载第3天(MOV-3)之前,并且优先与2A型纤维融合。定量的EdU +核发现大多数早期(MOV)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Skeletal muscle stem cell mitochondria are transferred to muscle fibers in response to a hypertrophic stimulus.

The fusion of skeletal muscle stem cell (MuSC) to myofibers during hypertrophy has exclusively focused on the transfer of the MuSC nucleus, leaving the fate of other MuSC organelles, such as mitochondria, largely unexplored. The objective of this study was to determine if MuSCs transfer their mitochondria upon myofiber fusion in response to a hypertrophic stimulus. To achieve this goal, we specifically labeled MuSC mitochondria with Dendra2 fluorescence by crossing the MuSC-specific CreER (Pax7CreER/CreER) mouse with the Rosa26-Dendra2 mouse to generate the Pax7-Dendra2 mouse. To induce the fusion of MuSC to myofibers, Pax7-Dendra2 mice underwent synergist ablation surgery to induce mechanical overload (MOV) of plantaris muscle for 3, 7 and 14 days. To track MuSC proliferation, a mini-osmotic pump was implanted at the time of MOV to continuously deliver EdU. At the designated time, plantaris muscles were excised and processed for immunohistochemistry to quantify Dendra2 + myofibers. There was a progressive increase in Dendra2-positive fibers across the MOV time course. Three distinct patterns or domains of Dendra2 fluorescence within myofibers were identified and designated as newly fused (NF), crescent (CS) or diffuse (DF). From these Dendra2 + domain types, we inferred MuSC fusion dynamics which indicated MuSC fusion occurred prior to mechanical overload day 3 (MOV-3) and preferentially with Type 2A fibers. Quantification of EdU + myonuclei found the majority of early (MOV < 3 days) MuSC fusion was division-independent, while proliferating MuSCs contributed primarily to later fusion events. The results of this study provide the first evidence that MuSC mitochondria are transferred to myofibers upon fusion during hypertrophy while, unexpectedly, revealing a greater complexity in MuSC fusion than previously recognized.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信