{"title":"自由表面气泡流动在一个开放的毛细管通道。","authors":"Bo Wu, Zongyu Wu, Yong Chen, Guangyu Li, Wen Yao","doi":"10.1038/s41526-025-00496-7","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates bubbly flow in a rectangular open channel under microgravity. A homogeneous flow model is used to compute frictional pressure loss and then establish a correlation between the drag coefficient and mass quality, leading to a one-dimensional model of free surface bubbly flow. Furthermore, the homogeneous flow model is integrated into computational fluid dynamics simulations, which align closely with experimental observations. The theoretical model and simulations show a strong concordance, with a critical flow rate determined through calculations exhibiting an average relative error of 4.93%. The findings reveal a positive correlation between mass quality and critical flow rate; increasing mass quality enhances the critical flow rate and stabilizes the free surface but reduces the liquid phase's flow efficiency. This research contributes to the theoretical understanding of microgravity free surface flow.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"11 1","pages":"43"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12267821/pdf/","citationCount":"0","resultStr":"{\"title\":\"Free surface bubbly flow in an open capillary channel.\",\"authors\":\"Bo Wu, Zongyu Wu, Yong Chen, Guangyu Li, Wen Yao\",\"doi\":\"10.1038/s41526-025-00496-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigates bubbly flow in a rectangular open channel under microgravity. A homogeneous flow model is used to compute frictional pressure loss and then establish a correlation between the drag coefficient and mass quality, leading to a one-dimensional model of free surface bubbly flow. Furthermore, the homogeneous flow model is integrated into computational fluid dynamics simulations, which align closely with experimental observations. The theoretical model and simulations show a strong concordance, with a critical flow rate determined through calculations exhibiting an average relative error of 4.93%. The findings reveal a positive correlation between mass quality and critical flow rate; increasing mass quality enhances the critical flow rate and stabilizes the free surface but reduces the liquid phase's flow efficiency. This research contributes to the theoretical understanding of microgravity free surface flow.</p>\",\"PeriodicalId\":54263,\"journal\":{\"name\":\"npj Microgravity\",\"volume\":\"11 1\",\"pages\":\"43\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12267821/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Microgravity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41526-025-00496-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Microgravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41526-025-00496-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Free surface bubbly flow in an open capillary channel.
This study investigates bubbly flow in a rectangular open channel under microgravity. A homogeneous flow model is used to compute frictional pressure loss and then establish a correlation between the drag coefficient and mass quality, leading to a one-dimensional model of free surface bubbly flow. Furthermore, the homogeneous flow model is integrated into computational fluid dynamics simulations, which align closely with experimental observations. The theoretical model and simulations show a strong concordance, with a critical flow rate determined through calculations exhibiting an average relative error of 4.93%. The findings reveal a positive correlation between mass quality and critical flow rate; increasing mass quality enhances the critical flow rate and stabilizes the free surface but reduces the liquid phase's flow efficiency. This research contributes to the theoretical understanding of microgravity free surface flow.
npj MicrogravityPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
7.30
自引率
7.80%
发文量
50
审稿时长
9 weeks
期刊介绍:
A new open access, online-only, multidisciplinary research journal, npj Microgravity is dedicated to publishing the most important scientific advances in the life sciences, physical sciences, and engineering fields that are facilitated by spaceflight and analogue platforms.