利用深度学习对长、短读序列数据进行联合处理,提高了变异调用的效率。

IF 4.5 Q1 BIOCHEMICAL RESEARCH METHODS
Cell Reports Methods Pub Date : 2025-07-21 Epub Date: 2025-07-15 DOI:10.1016/j.crmeth.2025.101107
Gennaro Gambardella
{"title":"利用深度学习对长、短读序列数据进行联合处理,提高了变异调用的效率。","authors":"Gennaro Gambardella","doi":"10.1016/j.crmeth.2025.101107","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the complementary strengths of short- and long-read sequencing approaches, variant-calling methods still rely on a single data type. In this study, we collected and harmonized Nanopore datasets of the seven healthy individuals in the GIAB project across three independent consortia. By leveraging these harmonized Nanopore data, we explore the benefits of using a hybrid DeepVariant model to jointly process Illumina and Nanopore data for germline variant detection. We show that a shallow hybrid long-short sequencing approach can match or surpass the germline variant detection accuracy of state-of-the-art single-technology methods, potentially reducing overall sequencing costs and enabling the detection of large germline structural variations. These findings hold great promise for molecular diagnostics in clinical settings, particularly for rare genetic disease screenings.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"101107"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12296420/pdf/","citationCount":"0","resultStr":"{\"title\":\"Joint processing of long- and short-read sequencing data with deep learning improves variant calling.\",\"authors\":\"Gennaro Gambardella\",\"doi\":\"10.1016/j.crmeth.2025.101107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite the complementary strengths of short- and long-read sequencing approaches, variant-calling methods still rely on a single data type. In this study, we collected and harmonized Nanopore datasets of the seven healthy individuals in the GIAB project across three independent consortia. By leveraging these harmonized Nanopore data, we explore the benefits of using a hybrid DeepVariant model to jointly process Illumina and Nanopore data for germline variant detection. We show that a shallow hybrid long-short sequencing approach can match or surpass the germline variant detection accuracy of state-of-the-art single-technology methods, potentially reducing overall sequencing costs and enabling the detection of large germline structural variations. These findings hold great promise for molecular diagnostics in clinical settings, particularly for rare genetic disease screenings.</p>\",\"PeriodicalId\":29773,\"journal\":{\"name\":\"Cell Reports Methods\",\"volume\":\" \",\"pages\":\"101107\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12296420/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crmeth.2025.101107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.101107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

尽管短读和长读测序方法具有互补的优势,但变量调用方法仍然依赖于单一数据类型。在这项研究中,我们收集并协调了GIAB项目中来自三个独立联盟的7名健康个体的纳米孔数据集。通过利用这些协调的纳米孔数据,我们探索了使用混合DeepVariant模型联合处理Illumina和纳米孔数据进行种系变异检测的好处。我们表明,浅杂交长-短测序方法可以匹配或超过最先进的单一技术方法的种系变异检测精度,有可能降低总体测序成本,并能够检测大型种系结构变异。这些发现对临床环境中的分子诊断,特别是对罕见遗传疾病的筛查具有很大的希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint processing of long- and short-read sequencing data with deep learning improves variant calling.

Despite the complementary strengths of short- and long-read sequencing approaches, variant-calling methods still rely on a single data type. In this study, we collected and harmonized Nanopore datasets of the seven healthy individuals in the GIAB project across three independent consortia. By leveraging these harmonized Nanopore data, we explore the benefits of using a hybrid DeepVariant model to jointly process Illumina and Nanopore data for germline variant detection. We show that a shallow hybrid long-short sequencing approach can match or surpass the germline variant detection accuracy of state-of-the-art single-technology methods, potentially reducing overall sequencing costs and enabling the detection of large germline structural variations. These findings hold great promise for molecular diagnostics in clinical settings, particularly for rare genetic disease screenings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信