应用网络理论管理海洋生态系统的模糊边界和分区。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ane Pastor Rollan, Eric L Berlow, Rich Williams, Eric A Treml
{"title":"应用网络理论管理海洋生态系统的模糊边界和分区。","authors":"Ane Pastor Rollan, Eric L Berlow, Rich Williams, Eric A Treml","doi":"10.1038/s41598-025-09601-y","DOIUrl":null,"url":null,"abstract":"<p><p>Management and monitoring of populations in complex habitat mosaics is challenging, requiring effective zonation and bio regionalization strategies. In recent years, marine systems have been partitioned in multiple ways, such as marine protected zones and fishery stocks to enhance conservation and resource management. Viewing these systems as complex ecological networks of connected areas, habitat patches, or sub-populations (nodes) connected by the movement of organisms (edges) helps improve management. Network theory identifies communities or clusters of tightly connected sub-populations, revealing ecologically meaningful structures. Applying network-based community detection algorithms can uncover these ecological units, enhancing marine seascape management. However, there is no consensus on the best methods for identifying ecologically meaningful communities. This study evaluates several community detection algorithms in ecology and demonstrates their effectiveness using two marine case studies: a larval dispersal network and a ship traffic network. We show where algorithms agree in detecting communities and highlight the importance of aligning the nature of the algorithm, connectivity data, and management goals. We also suggest that disagreements between algorithms may indicate areas where management boundaries should be flexible or fluid to better reflect the system's true nature. This study proposes an improved approach to partitioning for optimal conservation and management outcomes.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"25803"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12267638/pdf/","citationCount":"0","resultStr":"{\"title\":\"Managing the fuzzy boundaries and partitions of marine ecological systems using network theory.\",\"authors\":\"Ane Pastor Rollan, Eric L Berlow, Rich Williams, Eric A Treml\",\"doi\":\"10.1038/s41598-025-09601-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Management and monitoring of populations in complex habitat mosaics is challenging, requiring effective zonation and bio regionalization strategies. In recent years, marine systems have been partitioned in multiple ways, such as marine protected zones and fishery stocks to enhance conservation and resource management. Viewing these systems as complex ecological networks of connected areas, habitat patches, or sub-populations (nodes) connected by the movement of organisms (edges) helps improve management. Network theory identifies communities or clusters of tightly connected sub-populations, revealing ecologically meaningful structures. Applying network-based community detection algorithms can uncover these ecological units, enhancing marine seascape management. However, there is no consensus on the best methods for identifying ecologically meaningful communities. This study evaluates several community detection algorithms in ecology and demonstrates their effectiveness using two marine case studies: a larval dispersal network and a ship traffic network. We show where algorithms agree in detecting communities and highlight the importance of aligning the nature of the algorithm, connectivity data, and management goals. We also suggest that disagreements between algorithms may indicate areas where management boundaries should be flexible or fluid to better reflect the system's true nature. This study proposes an improved approach to partitioning for optimal conservation and management outcomes.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"25803\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12267638/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-09601-y\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-09601-y","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

管理和监测复杂生境马赛克中的种群是具有挑战性的,需要有效的分区和生物区划策略。近年来,为了加强养护和资源管理,通过海洋保护区和渔业种群等多种方式对海洋系统进行了划分。将这些系统视为复杂的生态网络,包括由生物运动(边缘)连接起来的连接区域、栖息地斑块或亚种群(节点),有助于改善管理。网络理论确定了紧密联系的亚种群的群落或集群,揭示了生态上有意义的结构。应用基于网络的群落检测算法可以发现这些生态单元,加强海洋景观管理。然而,对于识别具有生态意义的群落的最佳方法尚无共识。本研究评估了生态学中的几种群落检测算法,并通过两个海洋案例研究(幼虫扩散网络和船舶交通网络)证明了它们的有效性。我们展示了算法在检测社区中的一致之处,并强调了对齐算法、连接数据和管理目标的性质的重要性。我们还建议,算法之间的分歧可能表明管理边界应该灵活或流动的领域,以更好地反映系统的真实本质。本研究提出了一种改进的分区方法,以获得最佳的保护和管理结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Managing the fuzzy boundaries and partitions of marine ecological systems using network theory.

Management and monitoring of populations in complex habitat mosaics is challenging, requiring effective zonation and bio regionalization strategies. In recent years, marine systems have been partitioned in multiple ways, such as marine protected zones and fishery stocks to enhance conservation and resource management. Viewing these systems as complex ecological networks of connected areas, habitat patches, or sub-populations (nodes) connected by the movement of organisms (edges) helps improve management. Network theory identifies communities or clusters of tightly connected sub-populations, revealing ecologically meaningful structures. Applying network-based community detection algorithms can uncover these ecological units, enhancing marine seascape management. However, there is no consensus on the best methods for identifying ecologically meaningful communities. This study evaluates several community detection algorithms in ecology and demonstrates their effectiveness using two marine case studies: a larval dispersal network and a ship traffic network. We show where algorithms agree in detecting communities and highlight the importance of aligning the nature of the algorithm, connectivity data, and management goals. We also suggest that disagreements between algorithms may indicate areas where management boundaries should be flexible or fluid to better reflect the system's true nature. This study proposes an improved approach to partitioning for optimal conservation and management outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信