基于人工神经网络的大学生体育锻炼增强幸福感的机制分析。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yuxin Cong, Roxana Dev Omar Dev, Shamsulariffin Bin Samsudin, Kaihao Yu
{"title":"基于人工神经网络的大学生体育锻炼增强幸福感的机制分析。","authors":"Yuxin Cong, Roxana Dev Omar Dev, Shamsulariffin Bin Samsudin, Kaihao Yu","doi":"10.1038/s41598-025-11269-3","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the impact mechanism of college students' sports behavior on their well-being by constructing an Artificial Neural Network (ANN) model. The study employs an ANN architecture that combines a Long Short-Term Memory (LSTM) network and a Convolutional Neural Network (CNN). A prediction model is established based on the characteristics of sports behavior and psychological indices of well-being, such as psychological resilience, self-efficacy, and subjective well-being. The results show that the proposed LSTM + CNN model has achieved significant improvement on the test set. Its mean absolute error is only 0.072, the mean square error is 0.00596, and the root mean square error is 0.077, which is remarkably superior to traditional machine learning methods such as random forest and support vector regression. The innovative advantages of the proposed model in capturing the nonlinear relationships and deep characteristics of psychological and behavioral data is proved. The analysis of Shapley Additive Explanations (SHAP) values reveals three key factors significantly influencing well-being improvement. These impactful factors include the high-frequency exercise days per week (≥ 4), sustained morning exercise duration, and participation levels in group sports activities. The analysis of the dynamic threshold effect reveals that the critical points of distinct characteristic values exhibit substantial variations in their impact on well-being. Concurrently, the regulatory influence of sports behavior demonstrates differing intensities across diverse conditions. This study provides a new theoretical basis for designing personalized sports interventions and improves the accuracy of predicting psychological measurement data. Thus, it demonstrates the potential of sports behavior in promoting the mental health and well-being of college students.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"25855"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12267614/pdf/","citationCount":"0","resultStr":"{\"title\":\"Analysis of the mechanism of physical activity enhancing well-being among college students using artificial neural network.\",\"authors\":\"Yuxin Cong, Roxana Dev Omar Dev, Shamsulariffin Bin Samsudin, Kaihao Yu\",\"doi\":\"10.1038/s41598-025-11269-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study explores the impact mechanism of college students' sports behavior on their well-being by constructing an Artificial Neural Network (ANN) model. The study employs an ANN architecture that combines a Long Short-Term Memory (LSTM) network and a Convolutional Neural Network (CNN). A prediction model is established based on the characteristics of sports behavior and psychological indices of well-being, such as psychological resilience, self-efficacy, and subjective well-being. The results show that the proposed LSTM + CNN model has achieved significant improvement on the test set. Its mean absolute error is only 0.072, the mean square error is 0.00596, and the root mean square error is 0.077, which is remarkably superior to traditional machine learning methods such as random forest and support vector regression. The innovative advantages of the proposed model in capturing the nonlinear relationships and deep characteristics of psychological and behavioral data is proved. The analysis of Shapley Additive Explanations (SHAP) values reveals three key factors significantly influencing well-being improvement. These impactful factors include the high-frequency exercise days per week (≥ 4), sustained morning exercise duration, and participation levels in group sports activities. The analysis of the dynamic threshold effect reveals that the critical points of distinct characteristic values exhibit substantial variations in their impact on well-being. Concurrently, the regulatory influence of sports behavior demonstrates differing intensities across diverse conditions. This study provides a new theoretical basis for designing personalized sports interventions and improves the accuracy of predicting psychological measurement data. Thus, it demonstrates the potential of sports behavior in promoting the mental health and well-being of college students.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"25855\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12267614/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-11269-3\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-11269-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过构建人工神经网络(ANN)模型,探讨大学生体育行为对幸福感的影响机制。该研究采用了一种结合了长短期记忆(LSTM)网络和卷积神经网络(CNN)的人工神经网络架构。基于体育行为特征和心理弹性、自我效能感、主观幸福感等心理幸福感指标,建立预测模型。结果表明,提出的LSTM + CNN模型在测试集上取得了显著的改进。其平均绝对误差仅为0.072,均方误差为0.00596,均方根误差为0.077,明显优于随机森林、支持向量回归等传统机器学习方法。该模型在捕捉心理和行为数据的非线性关系和深层特征方面具有创新优势。Shapley加性解释(SHAP)值分析揭示了三个显著影响幸福感改善的关键因素。这些影响因素包括每周高频率运动天数(≥4天)、持续晨练时间和团体体育活动的参与水平。动态阈值效应分析表明,不同特征值的临界点对幸福感的影响存在较大差异。同时,运动行为的调节影响在不同条件下表现出不同的强度。本研究为设计个性化的运动干预提供了新的理论依据,提高了心理测量数据预测的准确性。由此可见,体育行为在促进大学生心理健康和幸福感方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of the mechanism of physical activity enhancing well-being among college students using artificial neural network.

This study explores the impact mechanism of college students' sports behavior on their well-being by constructing an Artificial Neural Network (ANN) model. The study employs an ANN architecture that combines a Long Short-Term Memory (LSTM) network and a Convolutional Neural Network (CNN). A prediction model is established based on the characteristics of sports behavior and psychological indices of well-being, such as psychological resilience, self-efficacy, and subjective well-being. The results show that the proposed LSTM + CNN model has achieved significant improvement on the test set. Its mean absolute error is only 0.072, the mean square error is 0.00596, and the root mean square error is 0.077, which is remarkably superior to traditional machine learning methods such as random forest and support vector regression. The innovative advantages of the proposed model in capturing the nonlinear relationships and deep characteristics of psychological and behavioral data is proved. The analysis of Shapley Additive Explanations (SHAP) values reveals three key factors significantly influencing well-being improvement. These impactful factors include the high-frequency exercise days per week (≥ 4), sustained morning exercise duration, and participation levels in group sports activities. The analysis of the dynamic threshold effect reveals that the critical points of distinct characteristic values exhibit substantial variations in their impact on well-being. Concurrently, the regulatory influence of sports behavior demonstrates differing intensities across diverse conditions. This study provides a new theoretical basis for designing personalized sports interventions and improves the accuracy of predicting psychological measurement data. Thus, it demonstrates the potential of sports behavior in promoting the mental health and well-being of college students.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信