{"title":"波洛沙姆188通过减轻线粒体和溶酶体膜损伤来减轻小鼠脑缺血再灌注损伤。","authors":"Hui Xu, Zhanhu Zhang, Xiaodong Tao, Ruirui Shi, Jian Xu, Xiaohua Zhang, Jinhua Gu","doi":"10.17712/nsj.2025.3.20240025","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To explore the beneficial effects and mechanisms of Poloxamer 188 (P188) in mitigating cerebral ischemia-reperfusion (I/R) injury in mice.</p><p><strong>Methods: </strong>This study was conducted from 2020 to 2022. Neurological function, brain water content, and infarct size were assessed in mice 24 h after I/R injury. Iridium-labeled Poloxamer 188 (Ir-P188) was characterized using <sup>1</sup>H-NMR, UV-Vis spectroscopy, and fluorescence emission analysis. Immunofluorescence was used to evaluate intracellular distribution of Ir-P188 in OGD/R-induced HT22 cells in vitro and ischemic mice in vivo. 24 h after reperfusion, the levels of ROS and inflammation in ischemic brain were measured, along with the protein levels of mitochondrial, lysosomal, and cytoplasmic fractions. Additionally, the protective effects of p188 and Ginkgolide B, both as single agents and in combination, against I/R were compared.</p><p><strong>Results: </strong>P188 intravenous administration could significantly reduce the infarct brain areas, improved neurological deficit, and decreased brain water content in mice after I/R injury. The accumulation of Ir-P188 was observed in OGD/R-induced HT22 cells and ischemic brain in mice. P188 suppressed ROS, inflammatory factors (NF-kB, IL-6, TNF-a), and inhibiting mitochondrial cytochrome C release and lysosomal protease translocation to the cytoplasm.</p><p><strong>Conclusion: </strong>P188 can penetrate intracellular compartments and effectively protect mice against I/R injury. The underlying mechanism may involve inhibiting ROS generation, mitigating inflammatory responses, and alleviating mitochondrial dysfunction and lysosomal damage.</p>","PeriodicalId":19284,"journal":{"name":"Neurosciences","volume":"30 3","pages":"216-225"},"PeriodicalIF":1.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12279340/pdf/","citationCount":"0","resultStr":"{\"title\":\"Poloxamer 188 alleviates cerebral ischemia-reperfusion injury in mice by reducing mitochondrial and lysosomal membrane damage.\",\"authors\":\"Hui Xu, Zhanhu Zhang, Xiaodong Tao, Ruirui Shi, Jian Xu, Xiaohua Zhang, Jinhua Gu\",\"doi\":\"10.17712/nsj.2025.3.20240025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>To explore the beneficial effects and mechanisms of Poloxamer 188 (P188) in mitigating cerebral ischemia-reperfusion (I/R) injury in mice.</p><p><strong>Methods: </strong>This study was conducted from 2020 to 2022. Neurological function, brain water content, and infarct size were assessed in mice 24 h after I/R injury. Iridium-labeled Poloxamer 188 (Ir-P188) was characterized using <sup>1</sup>H-NMR, UV-Vis spectroscopy, and fluorescence emission analysis. Immunofluorescence was used to evaluate intracellular distribution of Ir-P188 in OGD/R-induced HT22 cells in vitro and ischemic mice in vivo. 24 h after reperfusion, the levels of ROS and inflammation in ischemic brain were measured, along with the protein levels of mitochondrial, lysosomal, and cytoplasmic fractions. Additionally, the protective effects of p188 and Ginkgolide B, both as single agents and in combination, against I/R were compared.</p><p><strong>Results: </strong>P188 intravenous administration could significantly reduce the infarct brain areas, improved neurological deficit, and decreased brain water content in mice after I/R injury. The accumulation of Ir-P188 was observed in OGD/R-induced HT22 cells and ischemic brain in mice. P188 suppressed ROS, inflammatory factors (NF-kB, IL-6, TNF-a), and inhibiting mitochondrial cytochrome C release and lysosomal protease translocation to the cytoplasm.</p><p><strong>Conclusion: </strong>P188 can penetrate intracellular compartments and effectively protect mice against I/R injury. The underlying mechanism may involve inhibiting ROS generation, mitigating inflammatory responses, and alleviating mitochondrial dysfunction and lysosomal damage.</p>\",\"PeriodicalId\":19284,\"journal\":{\"name\":\"Neurosciences\",\"volume\":\"30 3\",\"pages\":\"216-225\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12279340/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurosciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.17712/nsj.2025.3.20240025\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurosciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.17712/nsj.2025.3.20240025","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Poloxamer 188 alleviates cerebral ischemia-reperfusion injury in mice by reducing mitochondrial and lysosomal membrane damage.
Objectives: To explore the beneficial effects and mechanisms of Poloxamer 188 (P188) in mitigating cerebral ischemia-reperfusion (I/R) injury in mice.
Methods: This study was conducted from 2020 to 2022. Neurological function, brain water content, and infarct size were assessed in mice 24 h after I/R injury. Iridium-labeled Poloxamer 188 (Ir-P188) was characterized using 1H-NMR, UV-Vis spectroscopy, and fluorescence emission analysis. Immunofluorescence was used to evaluate intracellular distribution of Ir-P188 in OGD/R-induced HT22 cells in vitro and ischemic mice in vivo. 24 h after reperfusion, the levels of ROS and inflammation in ischemic brain were measured, along with the protein levels of mitochondrial, lysosomal, and cytoplasmic fractions. Additionally, the protective effects of p188 and Ginkgolide B, both as single agents and in combination, against I/R were compared.
Results: P188 intravenous administration could significantly reduce the infarct brain areas, improved neurological deficit, and decreased brain water content in mice after I/R injury. The accumulation of Ir-P188 was observed in OGD/R-induced HT22 cells and ischemic brain in mice. P188 suppressed ROS, inflammatory factors (NF-kB, IL-6, TNF-a), and inhibiting mitochondrial cytochrome C release and lysosomal protease translocation to the cytoplasm.
Conclusion: P188 can penetrate intracellular compartments and effectively protect mice against I/R injury. The underlying mechanism may involve inhibiting ROS generation, mitigating inflammatory responses, and alleviating mitochondrial dysfunction and lysosomal damage.
期刊介绍:
Neurosciences is an open access, peer-reviewed, quarterly publication. Authors are invited to submit for publication articles reporting original work related to the nervous system, e.g., neurology, neurophysiology, neuroradiology, neurosurgery, neurorehabilitation, neurooncology, neuropsychiatry, and neurogenetics, etc. Basic research withclear clinical implications will also be considered. Review articles of current interest and high standard are welcomed for consideration. Prospective workshould not be backdated. There are also sections for Case Reports, Brief Communication, Correspondence, and medical news items. To promote continuous education, training, and learning, we include Clinical Images and MCQ’s. Highlights of international and regional meetings of interest, and specialized supplements will also be considered. All submissions must conform to the Uniform Requirements.