Sijia Zhao , Pin Sun , Chao Wang , Xiaolu Li , Zhenyang Xiu , Yu Tian , Xiaoxia Song , Xiangqin He , Tao Yu , Zhirong Jiang
{"title":"LncRNA 91,234.1靶向PRMT1/ASCL4/GPX4轴调控甲醛诱导的心肌细胞铁下垂和先天性心脏病","authors":"Sijia Zhao , Pin Sun , Chao Wang , Xiaolu Li , Zhenyang Xiu , Yu Tian , Xiaoxia Song , Xiangqin He , Tao Yu , Zhirong Jiang","doi":"10.1016/j.yjmcc.2025.07.010","DOIUrl":null,"url":null,"abstract":"<div><div>Congenital heart disease (CHD) are the predominant cause of neonatal mortality and the most prevalent congenital malformation. Additionally, CHD can impact cardiovascular health in adulthood and exacerbate cardiovascular conditions in the elderly. Emerging studies indicate that both genetic predispositions and environmental factors may contribute to the development of this condition. Notably, formaldehyde (FA), a ubiquitous environmental toxin, has been increasingly implicated in the pathophysiology of CHD through recent investigations. Earlier, we identified long noncoding RNAs (lncRNAs) that exhibited significant differential expression in rats with cardiac developmental impairments associated with FA exposure. Here our study aims to elucidate the role of lncRNA in pathological mechanisms by subjecting H9C2 cells to 24-h formaldehyde exposure or administering formaldehyde (2.0 mg/kg) to female rats and examining their offspring. We indicate that lncRNA 91,234.1 (lnc91234) plays a role in FA-induced CHD by facilitating ferroptosis via PRMT1/ASCL4/GPX4 axis, which influences the methylation of H4R3, leading to lipid peroxidation and malondialdehyde (MDA) accumulation. This research is the first to demonstrate that exposure to FA disrupts cardiac function through ferroptosis and identifies lnc91234 as a novel lncRNA that may serve as a potential therapeutic target for cardiac dysplasia and CHD by modulating myocardial function both in vivo and in vitro.</div></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"206 ","pages":"Pages 76-90"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LncRNA 91234.1 targets PRMT1/ASCL4/GPX4 axis to regulate formaldehyde-induced cardiomyocyte ferroptosis and congenital heart disease\",\"authors\":\"Sijia Zhao , Pin Sun , Chao Wang , Xiaolu Li , Zhenyang Xiu , Yu Tian , Xiaoxia Song , Xiangqin He , Tao Yu , Zhirong Jiang\",\"doi\":\"10.1016/j.yjmcc.2025.07.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Congenital heart disease (CHD) are the predominant cause of neonatal mortality and the most prevalent congenital malformation. Additionally, CHD can impact cardiovascular health in adulthood and exacerbate cardiovascular conditions in the elderly. Emerging studies indicate that both genetic predispositions and environmental factors may contribute to the development of this condition. Notably, formaldehyde (FA), a ubiquitous environmental toxin, has been increasingly implicated in the pathophysiology of CHD through recent investigations. Earlier, we identified long noncoding RNAs (lncRNAs) that exhibited significant differential expression in rats with cardiac developmental impairments associated with FA exposure. Here our study aims to elucidate the role of lncRNA in pathological mechanisms by subjecting H9C2 cells to 24-h formaldehyde exposure or administering formaldehyde (2.0 mg/kg) to female rats and examining their offspring. We indicate that lncRNA 91,234.1 (lnc91234) plays a role in FA-induced CHD by facilitating ferroptosis via PRMT1/ASCL4/GPX4 axis, which influences the methylation of H4R3, leading to lipid peroxidation and malondialdehyde (MDA) accumulation. This research is the first to demonstrate that exposure to FA disrupts cardiac function through ferroptosis and identifies lnc91234 as a novel lncRNA that may serve as a potential therapeutic target for cardiac dysplasia and CHD by modulating myocardial function both in vivo and in vitro.</div></div>\",\"PeriodicalId\":16402,\"journal\":{\"name\":\"Journal of molecular and cellular cardiology\",\"volume\":\"206 \",\"pages\":\"Pages 76-90\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular and cellular cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002228282500121X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular and cellular cardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002228282500121X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
LncRNA 91234.1 targets PRMT1/ASCL4/GPX4 axis to regulate formaldehyde-induced cardiomyocyte ferroptosis and congenital heart disease
Congenital heart disease (CHD) are the predominant cause of neonatal mortality and the most prevalent congenital malformation. Additionally, CHD can impact cardiovascular health in adulthood and exacerbate cardiovascular conditions in the elderly. Emerging studies indicate that both genetic predispositions and environmental factors may contribute to the development of this condition. Notably, formaldehyde (FA), a ubiquitous environmental toxin, has been increasingly implicated in the pathophysiology of CHD through recent investigations. Earlier, we identified long noncoding RNAs (lncRNAs) that exhibited significant differential expression in rats with cardiac developmental impairments associated with FA exposure. Here our study aims to elucidate the role of lncRNA in pathological mechanisms by subjecting H9C2 cells to 24-h formaldehyde exposure or administering formaldehyde (2.0 mg/kg) to female rats and examining their offspring. We indicate that lncRNA 91,234.1 (lnc91234) plays a role in FA-induced CHD by facilitating ferroptosis via PRMT1/ASCL4/GPX4 axis, which influences the methylation of H4R3, leading to lipid peroxidation and malondialdehyde (MDA) accumulation. This research is the first to demonstrate that exposure to FA disrupts cardiac function through ferroptosis and identifies lnc91234 as a novel lncRNA that may serve as a potential therapeutic target for cardiac dysplasia and CHD by modulating myocardial function both in vivo and in vitro.
期刊介绍:
The Journal of Molecular and Cellular Cardiology publishes work advancing knowledge of the mechanisms responsible for both normal and diseased cardiovascular function. To this end papers are published in all relevant areas. These include (but are not limited to): structural biology; genetics; proteomics; morphology; stem cells; molecular biology; metabolism; biophysics; bioengineering; computational modeling and systems analysis; electrophysiology; pharmacology and physiology. Papers are encouraged with both basic and translational approaches. The journal is directed not only to basic scientists but also to clinical cardiologists who wish to follow the rapidly advancing frontiers of basic knowledge of the heart and circulation.