{"title":"感觉信息的时间编码研究进展。","authors":"Peter Cariani, Janet M Baker","doi":"10.3389/fncom.2025.1571109","DOIUrl":null,"url":null,"abstract":"<p><p>Here we present evidence for the ubiquity of fine spike timing and temporal coding broadly observed across sensory systems and widely conserved across diverse phyla, spanning invertebrates and vertebrates. A taxonomy of basic neural coding types includes channel activation patterns, temporal patterns of spikes, and patterns of spike latencies. Various examples and types of combination temporal-channel codes are discussed, including firing sequence codes. Multiplexing of temporal codes and mixed channel-temporal codes are considered. Neurophysiological and perceptual evidence for temporal coding in many sensory modalities is surveyed: audition, mechanoreception, electroreception, vision, gustation, olfaction, cutaneous senses, proprioception, and the vestibular sense. Precise phase-locked, phase-triggered, and spike latency codes can be found in many sensory systems. Temporal resolutions on millisecond and submillisecond scales are common. General correlation-based representations and operations are discussed. In almost every modality, there is some role for temporal coding, often in surprising places, such as color vision and taste. More investigations into temporal coding are well-warranted.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"19 ","pages":"1571109"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12263675/pdf/","citationCount":"0","resultStr":"{\"title\":\"Survey of temporal coding of sensory information.\",\"authors\":\"Peter Cariani, Janet M Baker\",\"doi\":\"10.3389/fncom.2025.1571109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Here we present evidence for the ubiquity of fine spike timing and temporal coding broadly observed across sensory systems and widely conserved across diverse phyla, spanning invertebrates and vertebrates. A taxonomy of basic neural coding types includes channel activation patterns, temporal patterns of spikes, and patterns of spike latencies. Various examples and types of combination temporal-channel codes are discussed, including firing sequence codes. Multiplexing of temporal codes and mixed channel-temporal codes are considered. Neurophysiological and perceptual evidence for temporal coding in many sensory modalities is surveyed: audition, mechanoreception, electroreception, vision, gustation, olfaction, cutaneous senses, proprioception, and the vestibular sense. Precise phase-locked, phase-triggered, and spike latency codes can be found in many sensory systems. Temporal resolutions on millisecond and submillisecond scales are common. General correlation-based representations and operations are discussed. In almost every modality, there is some role for temporal coding, often in surprising places, such as color vision and taste. More investigations into temporal coding are well-warranted.</p>\",\"PeriodicalId\":12363,\"journal\":{\"name\":\"Frontiers in Computational Neuroscience\",\"volume\":\"19 \",\"pages\":\"1571109\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12263675/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fncom.2025.1571109\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2025.1571109","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Here we present evidence for the ubiquity of fine spike timing and temporal coding broadly observed across sensory systems and widely conserved across diverse phyla, spanning invertebrates and vertebrates. A taxonomy of basic neural coding types includes channel activation patterns, temporal patterns of spikes, and patterns of spike latencies. Various examples and types of combination temporal-channel codes are discussed, including firing sequence codes. Multiplexing of temporal codes and mixed channel-temporal codes are considered. Neurophysiological and perceptual evidence for temporal coding in many sensory modalities is surveyed: audition, mechanoreception, electroreception, vision, gustation, olfaction, cutaneous senses, proprioception, and the vestibular sense. Precise phase-locked, phase-triggered, and spike latency codes can be found in many sensory systems. Temporal resolutions on millisecond and submillisecond scales are common. General correlation-based representations and operations are discussed. In almost every modality, there is some role for temporal coding, often in surprising places, such as color vision and taste. More investigations into temporal coding are well-warranted.
期刊介绍:
Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions.
Also: comp neuro