{"title":"使用预测编码启发的变分递归神经网络在焦点状态和走神之间进行自主转换建模。","authors":"Henrique Oyama, Takazumi Matsumoto, Jun Tani","doi":"10.3389/fncom.2025.1578135","DOIUrl":null,"url":null,"abstract":"<p><p>Mind-wandering reflects a dynamic interplay between focused attention and off-task mental states. Despite its relevance in understanding fundamental cognitive processes, such as attention regulation, decision-making, and creativity, previous models have not yet provided an account of the neural mechanisms for autonomous shifts between focus state (FS) and mind-wandering (MW). To address this, we conduct model simulation experiments employing predictive coding as a theoretical framework of perception to investigate possible neural mechanisms underlying these autonomous shifts between the two states. In particular, we modeled perception processes of continuous sensory sequences using our previously proposed variational RNN model under free energy minimization. The current study extends this model by introducing an online adaptation mechanism of a meta-level parameter, referred to as the meta-prior <b>w</b>, which regulates the complexity term in the free energy minimization. Our simulation experiments demonstrated that autonomous shifts between FS and MW take place when <b>w</b> switches between low and high values responding to a decrease and increase of the average reconstruction error over a past time window. Particularly, high <b>w</b> prioritized top-down predictions while low <b>w</b> emphasized bottom-up sensations. In this work, we speculate that self-awareness of MW may occur when the error signal accumulated over time exceeds a certain threshold. Finally, this paper explores how our experiment results align with existing studies and highlights their potential for future research.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"19 ","pages":"1578135"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12263957/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modeling autonomous shifts between focus state and mind-wandering using a predictive-coding-inspired variational recurrent neural network.\",\"authors\":\"Henrique Oyama, Takazumi Matsumoto, Jun Tani\",\"doi\":\"10.3389/fncom.2025.1578135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mind-wandering reflects a dynamic interplay between focused attention and off-task mental states. Despite its relevance in understanding fundamental cognitive processes, such as attention regulation, decision-making, and creativity, previous models have not yet provided an account of the neural mechanisms for autonomous shifts between focus state (FS) and mind-wandering (MW). To address this, we conduct model simulation experiments employing predictive coding as a theoretical framework of perception to investigate possible neural mechanisms underlying these autonomous shifts between the two states. In particular, we modeled perception processes of continuous sensory sequences using our previously proposed variational RNN model under free energy minimization. The current study extends this model by introducing an online adaptation mechanism of a meta-level parameter, referred to as the meta-prior <b>w</b>, which regulates the complexity term in the free energy minimization. Our simulation experiments demonstrated that autonomous shifts between FS and MW take place when <b>w</b> switches between low and high values responding to a decrease and increase of the average reconstruction error over a past time window. Particularly, high <b>w</b> prioritized top-down predictions while low <b>w</b> emphasized bottom-up sensations. In this work, we speculate that self-awareness of MW may occur when the error signal accumulated over time exceeds a certain threshold. Finally, this paper explores how our experiment results align with existing studies and highlights their potential for future research.</p>\",\"PeriodicalId\":12363,\"journal\":{\"name\":\"Frontiers in Computational Neuroscience\",\"volume\":\"19 \",\"pages\":\"1578135\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12263957/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fncom.2025.1578135\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2025.1578135","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Modeling autonomous shifts between focus state and mind-wandering using a predictive-coding-inspired variational recurrent neural network.
Mind-wandering reflects a dynamic interplay between focused attention and off-task mental states. Despite its relevance in understanding fundamental cognitive processes, such as attention regulation, decision-making, and creativity, previous models have not yet provided an account of the neural mechanisms for autonomous shifts between focus state (FS) and mind-wandering (MW). To address this, we conduct model simulation experiments employing predictive coding as a theoretical framework of perception to investigate possible neural mechanisms underlying these autonomous shifts between the two states. In particular, we modeled perception processes of continuous sensory sequences using our previously proposed variational RNN model under free energy minimization. The current study extends this model by introducing an online adaptation mechanism of a meta-level parameter, referred to as the meta-prior w, which regulates the complexity term in the free energy minimization. Our simulation experiments demonstrated that autonomous shifts between FS and MW take place when w switches between low and high values responding to a decrease and increase of the average reconstruction error over a past time window. Particularly, high w prioritized top-down predictions while low w emphasized bottom-up sensations. In this work, we speculate that self-awareness of MW may occur when the error signal accumulated over time exceeds a certain threshold. Finally, this paper explores how our experiment results align with existing studies and highlights their potential for future research.
期刊介绍:
Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions.
Also: comp neuro