Yunfan Gu, Hui Dong, Yanjun Wang, Beibei Hu, Hong Jiang, Rong Hu
{"title":"Nrf2/UBE3B通过NCOA4泛素化抑制铁蛋白自噬来保护急性肺损伤。","authors":"Yunfan Gu, Hui Dong, Yanjun Wang, Beibei Hu, Hong Jiang, Rong Hu","doi":"10.1186/s13062-025-00678-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Iron overload and ferroptosis are associated with intestinal ischemia and reperfusion (II/R)-induced acute lung injury (ALI). However, the mechanisms underlying the regulation of iron homeostasis remain unclear. Nrf2 regulates cellular iron homeostasis; nonetheless, its impact on ALI pathology and its underlying mechanism of action requires further investigation. Ubiquitin ligase E3B (UBE3B) plays a critical role in the proteasome pathway, which is essential for protein turnover and ubiquitin-mediated signaling. A recent study found that UBE3B plays a role in oxidative stress; nevertheless, it remains unknown whether its role is related to Nrf2. Furthermore, the exact role of UBE3B in ALI and its underlying mechanism remain largely uncharacterized.</p><p><strong>Methods and results: </strong>In the present study, immunohistochemical analysis of UBE3B expression in type II alveolar epithelial cells (AECII) was conducted, and its expression was found to be decreased in II/R-ALI. Western blot analysis indicated that UBE3B hypoactivation may aggravate oxidative stress, thereby promoting ALI. Moreover, UBE3B was involved in iron metabolism dysfunction and ferroptosis. UBE3B deficiency enhanced the process of nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy and increased ferrous ion content, whereas overexpression of UBE3B reversed the harmful effects of Nrf2 knockdown on AECII, which may promote AECII ferroptosis.</p><p><strong>Conclusions: </strong>This study highlights the role of the Nrf2/UBE3B/NCOA4 axis in AECII ferroptosis and II/R-ALI pathogenesis, suggesting that Nrf2 activation may be a promising strategy for ALI treatment.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"20 1","pages":"85"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12265372/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nrf2/UBE3B protects against acute lung injury by inhibiting ferritinophagy through the ubiquitination of NCOA4.\",\"authors\":\"Yunfan Gu, Hui Dong, Yanjun Wang, Beibei Hu, Hong Jiang, Rong Hu\",\"doi\":\"10.1186/s13062-025-00678-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Iron overload and ferroptosis are associated with intestinal ischemia and reperfusion (II/R)-induced acute lung injury (ALI). However, the mechanisms underlying the regulation of iron homeostasis remain unclear. Nrf2 regulates cellular iron homeostasis; nonetheless, its impact on ALI pathology and its underlying mechanism of action requires further investigation. Ubiquitin ligase E3B (UBE3B) plays a critical role in the proteasome pathway, which is essential for protein turnover and ubiquitin-mediated signaling. A recent study found that UBE3B plays a role in oxidative stress; nevertheless, it remains unknown whether its role is related to Nrf2. Furthermore, the exact role of UBE3B in ALI and its underlying mechanism remain largely uncharacterized.</p><p><strong>Methods and results: </strong>In the present study, immunohistochemical analysis of UBE3B expression in type II alveolar epithelial cells (AECII) was conducted, and its expression was found to be decreased in II/R-ALI. Western blot analysis indicated that UBE3B hypoactivation may aggravate oxidative stress, thereby promoting ALI. Moreover, UBE3B was involved in iron metabolism dysfunction and ferroptosis. UBE3B deficiency enhanced the process of nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy and increased ferrous ion content, whereas overexpression of UBE3B reversed the harmful effects of Nrf2 knockdown on AECII, which may promote AECII ferroptosis.</p><p><strong>Conclusions: </strong>This study highlights the role of the Nrf2/UBE3B/NCOA4 axis in AECII ferroptosis and II/R-ALI pathogenesis, suggesting that Nrf2 activation may be a promising strategy for ALI treatment.</p>\",\"PeriodicalId\":9164,\"journal\":{\"name\":\"Biology Direct\",\"volume\":\"20 1\",\"pages\":\"85\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12265372/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology Direct\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13062-025-00678-z\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13062-025-00678-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
背景:铁超载和铁上吊与肠缺血再灌注(II/R)诱导的急性肺损伤(ALI)有关。然而,铁稳态调节的机制尚不清楚。Nrf2调控细胞铁稳态;尽管如此,其对ALI病理的影响及其潜在的作用机制仍需进一步研究。泛素连接酶E3B (Ubiquitin connection ase E3B, UBE3B)在蛋白酶体通路中起关键作用,对蛋白质周转和泛素介导的信号传导至关重要。最近的一项研究发现,UBE3B在氧化应激中起作用;然而,其作用是否与Nrf2有关尚不清楚。此外,UBE3B在ALI中的确切作用及其潜在机制在很大程度上仍未明确。方法与结果:本研究通过免疫组化分析UBE3B在II型肺泡上皮细胞(AECII)中的表达,发现其在II/R-ALI中表达降低。Western blot分析显示,UBE3B失活可能加重氧化应激,从而促进ALI。此外,UBE3B还参与铁代谢功能障碍和铁下垂。UBE3B缺失增强了核受体共激活因子4 (NCOA4)介导的铁蛋白自噬过程,增加了亚铁离子含量,而UBE3B过表达逆转了Nrf2敲低对AECII的有害作用,可能促进AECII铁凋亡。结论:本研究强调了Nrf2/UBE3B/NCOA4轴在AECII铁凋亡和II/R-ALI发病机制中的作用,提示Nrf2激活可能是一种很有前景的ALI治疗策略。
Nrf2/UBE3B protects against acute lung injury by inhibiting ferritinophagy through the ubiquitination of NCOA4.
Background: Iron overload and ferroptosis are associated with intestinal ischemia and reperfusion (II/R)-induced acute lung injury (ALI). However, the mechanisms underlying the regulation of iron homeostasis remain unclear. Nrf2 regulates cellular iron homeostasis; nonetheless, its impact on ALI pathology and its underlying mechanism of action requires further investigation. Ubiquitin ligase E3B (UBE3B) plays a critical role in the proteasome pathway, which is essential for protein turnover and ubiquitin-mediated signaling. A recent study found that UBE3B plays a role in oxidative stress; nevertheless, it remains unknown whether its role is related to Nrf2. Furthermore, the exact role of UBE3B in ALI and its underlying mechanism remain largely uncharacterized.
Methods and results: In the present study, immunohistochemical analysis of UBE3B expression in type II alveolar epithelial cells (AECII) was conducted, and its expression was found to be decreased in II/R-ALI. Western blot analysis indicated that UBE3B hypoactivation may aggravate oxidative stress, thereby promoting ALI. Moreover, UBE3B was involved in iron metabolism dysfunction and ferroptosis. UBE3B deficiency enhanced the process of nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy and increased ferrous ion content, whereas overexpression of UBE3B reversed the harmful effects of Nrf2 knockdown on AECII, which may promote AECII ferroptosis.
Conclusions: This study highlights the role of the Nrf2/UBE3B/NCOA4 axis in AECII ferroptosis and II/R-ALI pathogenesis, suggesting that Nrf2 activation may be a promising strategy for ALI treatment.
期刊介绍:
Biology Direct serves the life science research community as an open access, peer-reviewed online journal, providing authors and readers with an alternative to the traditional model of peer review. Biology Direct considers original research articles, hypotheses, comments, discovery notes and reviews in subject areas currently identified as those most conducive to the open review approach, primarily those with a significant non-experimental component.