脂肪源性干细胞细胞外囊泡富集分泌组上调聚簇蛋白以减轻阿霉素诱导的心肌细胞凋亡。

IF 4.9 2区 生物学 Q1 BIOLOGY
Wan-Tseng Hsu, Shinji Kobuchi, Tung-Chun Russell Chien, I-Chun Chen, Shohei Hamada, Masayuki Tsujimoto, I-Lin Tsai, Yun-Sheng Wong, Kuan-Hsuan Tung, Ying-Zhen He
{"title":"脂肪源性干细胞细胞外囊泡富集分泌组上调聚簇蛋白以减轻阿霉素诱导的心肌细胞凋亡。","authors":"Wan-Tseng Hsu, Shinji Kobuchi, Tung-Chun Russell Chien, I-Chun Chen, Shohei Hamada, Masayuki Tsujimoto, I-Lin Tsai, Yun-Sheng Wong, Kuan-Hsuan Tung, Ying-Zhen He","doi":"10.1186/s13062-025-00664-5","DOIUrl":null,"url":null,"abstract":"<p><p>Doxorubicin (DOX) is a potent chemotherapeutic widely used against various cancers, but its clinical application is limited by DOX-induced cardiotoxicity (DIC). This study explored the cardioprotective potential of extracellular vesicle-enriched secretome derived from adipose stem cells (EVS<sub>ASC</sub>) in mitigating DOX-induced apoptosis in cardiomyocytes. Adipose-derived stem cells were cultured, and their conditioned medium and extraceullular vesicles were isolated and characterized according to the Minimal Information for Studies of Extracellular Vesicles 2023 guidelines. HL-1 cardiomyocytes were pretreated with EVS<sub>ASC</sub> before exposure to 1 µM DOX. Cell viability was assessed via the cell counting kit-8 assay, while apoptosis markers and survival mediators were evaluated through Western blotting. RNA sequencing identified differentially expressed genes, including clusterin (Clu), which was further quantified using an enzyme-linked immunosorbent assay. The functional role of clusterin was validated through siRNA-mediated knockdown. EVS<sub>ASC</sub> significantly improved cell viability in DOX-exposed cardiomyocytes and reduced the cleaved caspase-3 to procaspase-3 ratio. Clusterin expression was highest in EVS<sub>ASC</sub>-treated cells, and its knockdown markedly increased caspase-3 cleavage, confirming its pivotal role in cardioprotection. Moreover, EVS<sub>ASC</sub> enhanced the phosphorylation of AKT, Bcl2-associated agonist of cell death, and glycogen synthase kinase-3β, implicating PI3K/AKT pathway activation in clusterin upregulation and anti-apoptotic effects. These findings demonstrate that EVS<sub>ASC</sub> mitigates DOX-induced apoptosis in cardiomyocytes through clusterin upregulation and PI3K/AKT pathway activation. Clusterin is identified as a potential biomarker for evaluating EVS<sub>ASC</sub> efficacy. While EVS<sub>ASC</sub> shows promise as a cardioprotective strategy against DIC, further studies are needed to optimize its therapeutic safety by addressing potential oncogenic risks.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"20 1","pages":"84"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12265340/pdf/","citationCount":"0","resultStr":"{\"title\":\"Extracellular vesicle-enriched secretome of adipose-derived stem cells upregulates clusterin to alleviate doxorubicin-induced apoptosis in cardiomyocytes.\",\"authors\":\"Wan-Tseng Hsu, Shinji Kobuchi, Tung-Chun Russell Chien, I-Chun Chen, Shohei Hamada, Masayuki Tsujimoto, I-Lin Tsai, Yun-Sheng Wong, Kuan-Hsuan Tung, Ying-Zhen He\",\"doi\":\"10.1186/s13062-025-00664-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Doxorubicin (DOX) is a potent chemotherapeutic widely used against various cancers, but its clinical application is limited by DOX-induced cardiotoxicity (DIC). This study explored the cardioprotective potential of extracellular vesicle-enriched secretome derived from adipose stem cells (EVS<sub>ASC</sub>) in mitigating DOX-induced apoptosis in cardiomyocytes. Adipose-derived stem cells were cultured, and their conditioned medium and extraceullular vesicles were isolated and characterized according to the Minimal Information for Studies of Extracellular Vesicles 2023 guidelines. HL-1 cardiomyocytes were pretreated with EVS<sub>ASC</sub> before exposure to 1 µM DOX. Cell viability was assessed via the cell counting kit-8 assay, while apoptosis markers and survival mediators were evaluated through Western blotting. RNA sequencing identified differentially expressed genes, including clusterin (Clu), which was further quantified using an enzyme-linked immunosorbent assay. The functional role of clusterin was validated through siRNA-mediated knockdown. EVS<sub>ASC</sub> significantly improved cell viability in DOX-exposed cardiomyocytes and reduced the cleaved caspase-3 to procaspase-3 ratio. Clusterin expression was highest in EVS<sub>ASC</sub>-treated cells, and its knockdown markedly increased caspase-3 cleavage, confirming its pivotal role in cardioprotection. Moreover, EVS<sub>ASC</sub> enhanced the phosphorylation of AKT, Bcl2-associated agonist of cell death, and glycogen synthase kinase-3β, implicating PI3K/AKT pathway activation in clusterin upregulation and anti-apoptotic effects. These findings demonstrate that EVS<sub>ASC</sub> mitigates DOX-induced apoptosis in cardiomyocytes through clusterin upregulation and PI3K/AKT pathway activation. Clusterin is identified as a potential biomarker for evaluating EVS<sub>ASC</sub> efficacy. While EVS<sub>ASC</sub> shows promise as a cardioprotective strategy against DIC, further studies are needed to optimize its therapeutic safety by addressing potential oncogenic risks.</p>\",\"PeriodicalId\":9164,\"journal\":{\"name\":\"Biology Direct\",\"volume\":\"20 1\",\"pages\":\"84\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12265340/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology Direct\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13062-025-00664-5\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13062-025-00664-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

多柔比星(DOX)是一种有效的化疗药物,广泛用于治疗各种癌症,但其临床应用受到DOX诱导的心脏毒性(DIC)的限制。本研究探讨了来自脂肪干细胞的细胞外囊泡富集分泌组(EVSASC)在减轻dox诱导的心肌细胞凋亡中的心脏保护潜力。培养脂肪来源的干细胞,并根据细胞外囊泡研究的最小信息2023指南分离和表征其条件培养基和囊外泡。在暴露于1µM DOX之前,用EVSASC预处理HL-1心肌细胞。通过细胞计数试剂盒-8检测细胞活力,Western blotting检测细胞凋亡标志物和存活介质。RNA测序鉴定出差异表达的基因,包括聚簇蛋白(Clu),并使用酶联免疫吸附法进一步定量。通过sirna介导的敲低验证了clusterin的功能作用。EVSASC显著提高dox暴露心肌细胞的细胞活力,降低裂解caspase-3与procaspase-3的比值。Clusterin在evsasc处理的细胞中表达最高,其敲低显著增加caspase-3的切割,证实了其在心脏保护中的关键作用。此外,EVSASC增强了AKT、bcl2相关细胞死亡激动剂和糖原合成酶激酶3β的磷酸化,暗示PI3K/AKT通路的激活参与了簇蛋白上调和抗凋亡作用。这些发现表明,EVSASC通过上调聚簇蛋白和激活PI3K/AKT通路,减轻dox诱导的心肌细胞凋亡。Clusterin被认为是评估EVSASC疗效的潜在生物标志物。虽然EVSASC有望作为一种抗DIC的心脏保护策略,但需要进一步的研究来通过解决潜在的致癌风险来优化其治疗安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extracellular vesicle-enriched secretome of adipose-derived stem cells upregulates clusterin to alleviate doxorubicin-induced apoptosis in cardiomyocytes.

Doxorubicin (DOX) is a potent chemotherapeutic widely used against various cancers, but its clinical application is limited by DOX-induced cardiotoxicity (DIC). This study explored the cardioprotective potential of extracellular vesicle-enriched secretome derived from adipose stem cells (EVSASC) in mitigating DOX-induced apoptosis in cardiomyocytes. Adipose-derived stem cells were cultured, and their conditioned medium and extraceullular vesicles were isolated and characterized according to the Minimal Information for Studies of Extracellular Vesicles 2023 guidelines. HL-1 cardiomyocytes were pretreated with EVSASC before exposure to 1 µM DOX. Cell viability was assessed via the cell counting kit-8 assay, while apoptosis markers and survival mediators were evaluated through Western blotting. RNA sequencing identified differentially expressed genes, including clusterin (Clu), which was further quantified using an enzyme-linked immunosorbent assay. The functional role of clusterin was validated through siRNA-mediated knockdown. EVSASC significantly improved cell viability in DOX-exposed cardiomyocytes and reduced the cleaved caspase-3 to procaspase-3 ratio. Clusterin expression was highest in EVSASC-treated cells, and its knockdown markedly increased caspase-3 cleavage, confirming its pivotal role in cardioprotection. Moreover, EVSASC enhanced the phosphorylation of AKT, Bcl2-associated agonist of cell death, and glycogen synthase kinase-3β, implicating PI3K/AKT pathway activation in clusterin upregulation and anti-apoptotic effects. These findings demonstrate that EVSASC mitigates DOX-induced apoptosis in cardiomyocytes through clusterin upregulation and PI3K/AKT pathway activation. Clusterin is identified as a potential biomarker for evaluating EVSASC efficacy. While EVSASC shows promise as a cardioprotective strategy against DIC, further studies are needed to optimize its therapeutic safety by addressing potential oncogenic risks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biology Direct
Biology Direct 生物-生物学
CiteScore
6.40
自引率
10.90%
发文量
32
审稿时长
7 months
期刊介绍: Biology Direct serves the life science research community as an open access, peer-reviewed online journal, providing authors and readers with an alternative to the traditional model of peer review. Biology Direct considers original research articles, hypotheses, comments, discovery notes and reviews in subject areas currently identified as those most conducive to the open review approach, primarily those with a significant non-experimental component.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信