皮层发育中的分子特征。

IF 13.2 1区 医学 Q1 NEUROSCIENCES
Marilyn R Steyert, Tao Li, Xianhua Piao, Tomasz J Nowakowski
{"title":"皮层发育中的分子特征。","authors":"Marilyn R Steyert, Tao Li, Xianhua Piao, Tomasz J Nowakowski","doi":"10.1146/annurev-neuro-091823-014001","DOIUrl":null,"url":null,"abstract":"<p><p>The cerebral cortex, a brain structure that is responsible for higher-order cognitive functions, contains hundreds of distinct cell types distributed across dozens of anatomical and functional areas. These cells emerge from a limited set of progenitor cell types during early development through a stereotypic series of neurodevelopmental events that include patterning, neurogenesis, migration, and maturation. High-throughput single-cell and spatial genomics have enabled the systematic discovery of molecular signatures underlying the formation of the cerebral cortex in mammals, including primates and humans. Here, we review the major principles underlying the processes through which the remarkable diversity of cell types known to exist in the adult cerebral cortex emerges during early development and contextualize the molecular signatures of cell types in their forms, functions, and states that have been uncovered through recent transcriptomic studies. We discuss the challenges associated with the use of static measurements to capture the dynamics of development.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"48 1","pages":"445-464"},"PeriodicalIF":13.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Signatures in Cortical Development.\",\"authors\":\"Marilyn R Steyert, Tao Li, Xianhua Piao, Tomasz J Nowakowski\",\"doi\":\"10.1146/annurev-neuro-091823-014001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cerebral cortex, a brain structure that is responsible for higher-order cognitive functions, contains hundreds of distinct cell types distributed across dozens of anatomical and functional areas. These cells emerge from a limited set of progenitor cell types during early development through a stereotypic series of neurodevelopmental events that include patterning, neurogenesis, migration, and maturation. High-throughput single-cell and spatial genomics have enabled the systematic discovery of molecular signatures underlying the formation of the cerebral cortex in mammals, including primates and humans. Here, we review the major principles underlying the processes through which the remarkable diversity of cell types known to exist in the adult cerebral cortex emerges during early development and contextualize the molecular signatures of cell types in their forms, functions, and states that have been uncovered through recent transcriptomic studies. We discuss the challenges associated with the use of static measurements to capture the dynamics of development.</p>\",\"PeriodicalId\":8008,\"journal\":{\"name\":\"Annual review of neuroscience\",\"volume\":\"48 1\",\"pages\":\"445-464\"},\"PeriodicalIF\":13.2000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-neuro-091823-014001\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-neuro-091823-014001","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

大脑皮层是负责高级认知功能的大脑结构,它包含数百种不同的细胞类型,分布在数十个解剖和功能区域。在早期发育过程中,这些细胞由一组有限的祖细胞类型产生,通过一系列典型的神经发育事件,包括模式化、神经发生、迁移和成熟。高通量单细胞和空间基因组学使得系统地发现包括灵长类动物和人类在内的哺乳动物大脑皮层形成的分子特征成为可能。在这里,我们回顾了成人大脑皮层中存在的显著细胞类型多样性在早期发育过程中出现的主要原理,并将最近转录组学研究发现的细胞类型的形式、功能和状态的分子特征联系起来。我们将讨论使用静态度量来捕捉发展动态所带来的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular Signatures in Cortical Development.

The cerebral cortex, a brain structure that is responsible for higher-order cognitive functions, contains hundreds of distinct cell types distributed across dozens of anatomical and functional areas. These cells emerge from a limited set of progenitor cell types during early development through a stereotypic series of neurodevelopmental events that include patterning, neurogenesis, migration, and maturation. High-throughput single-cell and spatial genomics have enabled the systematic discovery of molecular signatures underlying the formation of the cerebral cortex in mammals, including primates and humans. Here, we review the major principles underlying the processes through which the remarkable diversity of cell types known to exist in the adult cerebral cortex emerges during early development and contextualize the molecular signatures of cell types in their forms, functions, and states that have been uncovered through recent transcriptomic studies. We discuss the challenges associated with the use of static measurements to capture the dynamics of development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual review of neuroscience
Annual review of neuroscience 医学-神经科学
CiteScore
25.30
自引率
0.70%
发文量
29
期刊介绍: The Annual Review of Neuroscience is a well-established and comprehensive journal in the field of neuroscience, with a rich history and a commitment to open access and scholarly communication. The journal has been in publication since 1978, providing a long-standing source of authoritative reviews in neuroscience. The Annual Review of Neuroscience encompasses a wide range of topics within neuroscience, including but not limited to: Molecular and cellular neuroscience, Neurogenetics, Developmental neuroscience, Neural plasticity and repair, Systems neuroscience, Cognitive neuroscience, Behavioral neuroscience, Neurobiology of disease. Occasionally, the journal also features reviews on the history of neuroscience and ethical considerations within the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信