{"title":"未脱矿的牙本质基质颗粒通过激活TGF-β/PI3K信号通路加速临界大小颅骨缺损的血管形成。","authors":"Wei Zu, Xiangwen Zhou, Qingsong Jiang","doi":"10.62347/OJTK8676","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To evaluate the effects of undemineralized dentin matrix (UDDM) particles on bone tissue regeneration and vascularization in a critical-sized skull defect (CSD) mouse model, and to elucidate the molecular mechanisms underlying UDDM extract-mediated promotion of endothelial cell proliferation, migration, and tube formation.</p><p><strong>Methods: </strong>UDDM particles and extracts were sourced from human third molars. A CSD mouse model was established, and UDDM particles were implanted into the defect site. Bone regeneration and vascularization (blood vessel volume and area) were assessed using micro-computed tomography (Micro-CT). Human umbilical vein endothelial cells (HUVECs) were treated with UDDM extract and a phosphatidylinositol 3-kinase (PI3K) inhibitor (HY-15244). Cell proliferation, migration, and tube formation were assessed. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot were used to analyze the expression of transforming growth factor-beta (TGF-β)/PI3K signaling pathway-related genes and proteins.</p><p><strong>Results: </strong>UDDM particles significantly enhanced bone formation and increased vascular volume and area in the CSD model. UDDM extract promoted HUVEC proliferation, migration, and tube formation, which were reversed by HY-15244 treatment. HY-15244 also inhibited the mRNA and protein expression of TGF-β/PI3K pathway components, which were partially rescued by UDDM extract.</p><p><strong>Conclusion: </strong>UDDM particles promote bone tissue regeneration and angiogenesis in a CSD mouse model. UDDM extract facilitates proliferation, migration, and tube formation of HUVECs by activating the TGF-β/PI3K signaling pathway. These findings suggest that UDDM particles and extracts hold promise for therapeutic application in bone defect repair and vascularization.</p>","PeriodicalId":7731,"journal":{"name":"American journal of translational research","volume":"17 6","pages":"4689-4700"},"PeriodicalIF":1.7000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12261147/pdf/","citationCount":"0","resultStr":"{\"title\":\"Undemineralized dentin matrix particles accelerate blood vessel formation in a critical-sized skull defect through activating the TGF-β/PI3K signaling pathway.\",\"authors\":\"Wei Zu, Xiangwen Zhou, Qingsong Jiang\",\"doi\":\"10.62347/OJTK8676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To evaluate the effects of undemineralized dentin matrix (UDDM) particles on bone tissue regeneration and vascularization in a critical-sized skull defect (CSD) mouse model, and to elucidate the molecular mechanisms underlying UDDM extract-mediated promotion of endothelial cell proliferation, migration, and tube formation.</p><p><strong>Methods: </strong>UDDM particles and extracts were sourced from human third molars. A CSD mouse model was established, and UDDM particles were implanted into the defect site. Bone regeneration and vascularization (blood vessel volume and area) were assessed using micro-computed tomography (Micro-CT). Human umbilical vein endothelial cells (HUVECs) were treated with UDDM extract and a phosphatidylinositol 3-kinase (PI3K) inhibitor (HY-15244). Cell proliferation, migration, and tube formation were assessed. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot were used to analyze the expression of transforming growth factor-beta (TGF-β)/PI3K signaling pathway-related genes and proteins.</p><p><strong>Results: </strong>UDDM particles significantly enhanced bone formation and increased vascular volume and area in the CSD model. UDDM extract promoted HUVEC proliferation, migration, and tube formation, which were reversed by HY-15244 treatment. HY-15244 also inhibited the mRNA and protein expression of TGF-β/PI3K pathway components, which were partially rescued by UDDM extract.</p><p><strong>Conclusion: </strong>UDDM particles promote bone tissue regeneration and angiogenesis in a CSD mouse model. UDDM extract facilitates proliferation, migration, and tube formation of HUVECs by activating the TGF-β/PI3K signaling pathway. These findings suggest that UDDM particles and extracts hold promise for therapeutic application in bone defect repair and vascularization.</p>\",\"PeriodicalId\":7731,\"journal\":{\"name\":\"American journal of translational research\",\"volume\":\"17 6\",\"pages\":\"4689-4700\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12261147/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of translational research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.62347/OJTK8676\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of translational research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62347/OJTK8676","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Undemineralized dentin matrix particles accelerate blood vessel formation in a critical-sized skull defect through activating the TGF-β/PI3K signaling pathway.
Objective: To evaluate the effects of undemineralized dentin matrix (UDDM) particles on bone tissue regeneration and vascularization in a critical-sized skull defect (CSD) mouse model, and to elucidate the molecular mechanisms underlying UDDM extract-mediated promotion of endothelial cell proliferation, migration, and tube formation.
Methods: UDDM particles and extracts were sourced from human third molars. A CSD mouse model was established, and UDDM particles were implanted into the defect site. Bone regeneration and vascularization (blood vessel volume and area) were assessed using micro-computed tomography (Micro-CT). Human umbilical vein endothelial cells (HUVECs) were treated with UDDM extract and a phosphatidylinositol 3-kinase (PI3K) inhibitor (HY-15244). Cell proliferation, migration, and tube formation were assessed. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot were used to analyze the expression of transforming growth factor-beta (TGF-β)/PI3K signaling pathway-related genes and proteins.
Results: UDDM particles significantly enhanced bone formation and increased vascular volume and area in the CSD model. UDDM extract promoted HUVEC proliferation, migration, and tube formation, which were reversed by HY-15244 treatment. HY-15244 also inhibited the mRNA and protein expression of TGF-β/PI3K pathway components, which were partially rescued by UDDM extract.
Conclusion: UDDM particles promote bone tissue regeneration and angiogenesis in a CSD mouse model. UDDM extract facilitates proliferation, migration, and tube formation of HUVECs by activating the TGF-β/PI3K signaling pathway. These findings suggest that UDDM particles and extracts hold promise for therapeutic application in bone defect repair and vascularization.