Yushan Tian, Quanli Liu, Yao Ji, Qiuling Dang, Yuanyuan Sun, Xiaosong He, Yue Liu, Jing Su
{"title":"“基于机器学习的复杂水文地质条件地区地下水硫酸盐浓度预测”的勘误表[Sci]。环境科学学报,1999,23(2024):171312。","authors":"Yushan Tian, Quanli Liu, Yao Ji, Qiuling Dang, Yuanyuan Sun, Xiaosong He, Yue Liu, Jing Su","doi":"10.1016/j.scitotenv.2025.180078","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"993 ","pages":"Article 180078"},"PeriodicalIF":8.0000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrigendum to “Prediction of sulfate concentrations in groundwater in areas with complex hydrogeological conditions based on machine learning” [Sci. Total Environ. 923 (2024) 171312]\",\"authors\":\"Yushan Tian, Quanli Liu, Yao Ji, Qiuling Dang, Yuanyuan Sun, Xiaosong He, Yue Liu, Jing Su\",\"doi\":\"10.1016/j.scitotenv.2025.180078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\"993 \",\"pages\":\"Article 180078\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0048969725017188\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725017188","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Corrigendum to “Prediction of sulfate concentrations in groundwater in areas with complex hydrogeological conditions based on machine learning” [Sci. Total Environ. 923 (2024) 171312]
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.