滑动交联聚轮烷拓扑网络:高压锂金属电池的准固体电解质。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Huirong Zhu, Xiaoyue Zeng, Xuewei Liu, Jiaxing Zhu, Jinghao Hua, Jinle Lan, Yunhua Yu, Xiaoping Yang
{"title":"滑动交联聚轮烷拓扑网络:高压锂金属电池的准固体电解质。","authors":"Huirong Zhu, Xiaoyue Zeng, Xuewei Liu, Jiaxing Zhu, Jinghao Hua, Jinle Lan, Yunhua Yu, Xiaoping Yang","doi":"10.1002/advs.202508598","DOIUrl":null,"url":null,"abstract":"<p><p>Although polymer-based electrolytes offer advantages like low cost, favorable interfacial compatibility, and processability for solid-state lithium metal batteries with high safety and high energy density, conventional linear polymer-based electrolytes suffer from inadequate oxidation resistance and mechanical strength at operating voltages above 4.5 V, causing rapid capacity degradation and reduced battery lifespan. Inspired by the mechanical slide-ring structure of polyrotaxanes (PR), a series of high-voltage-resistant sliding crosslinked quasi-solid electrolytes (PMBA-PPR<sub>x</sub>) is designed and synthesized via in situ thermal polymerization of varying amounts of vinyl functional polyrotaxanes (PPRs) with N,N'-methylenebisacrylamide (MBA). The optimal PMBA-PPR<sub>5</sub> electrolyte realizes the synergistic enhancement of both mechanical properties and high-voltage-resistant electrochemical properties as well as the good interfacial compatibility. The dynamic slide ring structure of PPRs effectively dissipates the energy generated by lithium dendrite growth, thereby maintaining the mechanical robustness of the electrolyte during battery cycling and achieving lithium deposition/stripping behavior for more than 2000 h at 0.5 mA cm<sup>-2</sup>. The strong polar amide groups of MBA not only improve the lithium-ion transference number (0.69), but also enhance the high-voltage stability of the electrolyte (∼ 5.5 V), ultimately resulting in excellent cycling stability and capacity retention of Li|PMBA-PPR<sub>5</sub>|LFP and Li|PMBA-PPR<sub>5</sub>|NCM811 cells. This slide-crosslinked polyrotaxane topological dynamic structure provides a new strategy for the design of high-voltage lithium metal electrolytes.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e08598"},"PeriodicalIF":14.1000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Slide-Crosslinked Polyrotaxane Topological Networks: Quasi-Solid Electrolyte for High-Voltage Lithium Metal Batteries.\",\"authors\":\"Huirong Zhu, Xiaoyue Zeng, Xuewei Liu, Jiaxing Zhu, Jinghao Hua, Jinle Lan, Yunhua Yu, Xiaoping Yang\",\"doi\":\"10.1002/advs.202508598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although polymer-based electrolytes offer advantages like low cost, favorable interfacial compatibility, and processability for solid-state lithium metal batteries with high safety and high energy density, conventional linear polymer-based electrolytes suffer from inadequate oxidation resistance and mechanical strength at operating voltages above 4.5 V, causing rapid capacity degradation and reduced battery lifespan. Inspired by the mechanical slide-ring structure of polyrotaxanes (PR), a series of high-voltage-resistant sliding crosslinked quasi-solid electrolytes (PMBA-PPR<sub>x</sub>) is designed and synthesized via in situ thermal polymerization of varying amounts of vinyl functional polyrotaxanes (PPRs) with N,N'-methylenebisacrylamide (MBA). The optimal PMBA-PPR<sub>5</sub> electrolyte realizes the synergistic enhancement of both mechanical properties and high-voltage-resistant electrochemical properties as well as the good interfacial compatibility. The dynamic slide ring structure of PPRs effectively dissipates the energy generated by lithium dendrite growth, thereby maintaining the mechanical robustness of the electrolyte during battery cycling and achieving lithium deposition/stripping behavior for more than 2000 h at 0.5 mA cm<sup>-2</sup>. The strong polar amide groups of MBA not only improve the lithium-ion transference number (0.69), but also enhance the high-voltage stability of the electrolyte (∼ 5.5 V), ultimately resulting in excellent cycling stability and capacity retention of Li|PMBA-PPR<sub>5</sub>|LFP and Li|PMBA-PPR<sub>5</sub>|NCM811 cells. This slide-crosslinked polyrotaxane topological dynamic structure provides a new strategy for the design of high-voltage lithium metal electrolytes.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e08598\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202508598\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202508598","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

尽管聚合物电解质具有低成本、良好的界面兼容性和可加工性等优点,可用于固态锂金属电池,具有高安全性和高能量密度,但传统的线性聚合物电解质在工作电压高于4.5 V时,其抗氧化性和机械强度不足,导致容量快速退化,缩短电池寿命。受聚轮烷(PR)机械滑环结构的启发,设计并合成了一系列耐高压滑动交联准固体电解质(PMBA-PPRx),并将不同数量的乙烯基功能聚轮烷(ppr)与N,N'-亚甲基双丙烯酰胺(MBA)原位热聚合。最佳PMBA-PPR5电解质实现了力学性能和耐高压电化学性能的协同增强,并具有良好的界面相容性。ppr的动态滑环结构有效地耗散了锂枝晶生长产生的能量,从而在电池循环过程中保持了电解质的机械稳健性,并在0.5 mA cm-2下实现了超过2000小时的锂沉积/剥离行为。MBA的强极性酰胺基团不仅提高了锂离子转移数(0.69),而且提高了电解质的高压稳定性(~ 5.5 V),最终使Li|PMBA-PPR5|LFP和Li|PMBA-PPR5|NCM811电池具有优异的循环稳定性和容量保持性。这种滑动交联聚轮烷拓扑动态结构为高压锂金属电解质的设计提供了一种新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Slide-Crosslinked Polyrotaxane Topological Networks: Quasi-Solid Electrolyte for High-Voltage Lithium Metal Batteries.

Although polymer-based electrolytes offer advantages like low cost, favorable interfacial compatibility, and processability for solid-state lithium metal batteries with high safety and high energy density, conventional linear polymer-based electrolytes suffer from inadequate oxidation resistance and mechanical strength at operating voltages above 4.5 V, causing rapid capacity degradation and reduced battery lifespan. Inspired by the mechanical slide-ring structure of polyrotaxanes (PR), a series of high-voltage-resistant sliding crosslinked quasi-solid electrolytes (PMBA-PPRx) is designed and synthesized via in situ thermal polymerization of varying amounts of vinyl functional polyrotaxanes (PPRs) with N,N'-methylenebisacrylamide (MBA). The optimal PMBA-PPR5 electrolyte realizes the synergistic enhancement of both mechanical properties and high-voltage-resistant electrochemical properties as well as the good interfacial compatibility. The dynamic slide ring structure of PPRs effectively dissipates the energy generated by lithium dendrite growth, thereby maintaining the mechanical robustness of the electrolyte during battery cycling and achieving lithium deposition/stripping behavior for more than 2000 h at 0.5 mA cm-2. The strong polar amide groups of MBA not only improve the lithium-ion transference number (0.69), but also enhance the high-voltage stability of the electrolyte (∼ 5.5 V), ultimately resulting in excellent cycling stability and capacity retention of Li|PMBA-PPR5|LFP and Li|PMBA-PPR5|NCM811 cells. This slide-crosslinked polyrotaxane topological dynamic structure provides a new strategy for the design of high-voltage lithium metal electrolytes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信